Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 28 of 28

Full-Text Articles in Mechanical Engineering

Development Of An Improved Low-Order Model For Propeller-Wing Interactions, Joshua Taylor Goates Dec 2018

Development Of An Improved Low-Order Model For Propeller-Wing Interactions, Joshua Taylor Goates

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

For aircraft that have propellers mounted in front of the wings or tail, the prop wash produced by the propellers can have a strong influence on the aerodynamics of the aircraft. As the accelerated air from the propeller flows over the wings and tail, it can cause an alteration in the aerodynamic forces produced by those surfaces. Thus, an understanding of propeller-wing interactions is essential for the design and analysis of many aircraft.

There are multiple existing methods for analyzing the propeller-wing interactions. High order methods, such as wind tunnel testing or computational fluid dynamics, provide very accurate results but …


Droplet Impact Onto Super-Hydrophobic Surfaces And Determining The Response To Heat And Light Of Terrestrial Cyanobacteria, Benjamin B. Lovett Dec 2018

Droplet Impact Onto Super-Hydrophobic Surfaces And Determining The Response To Heat And Light Of Terrestrial Cyanobacteria, Benjamin B. Lovett

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

This thesis examines droplets striking water repelling surfaces as well as the movement of a soil based bacteria under various light and heat conditions. Droplet impact studies have shown that introducing a macroscopic feature to a water repelling surface can reduce the amount of time that droplet is in contact with the surface. By manipulating water droplets to impact different sized needles at varying speeds, we present how a needle can induce a similar reduction in the residence time of the droplet to more widely studied features. Results show the spreading and lift-off characteristics of the droplet are dependent on …


Inter-Laminar Fracture Of 3d-Printed Plastics - Development Of Methods, Christopher Stolinski Dec 2018

Inter-Laminar Fracture Of 3d-Printed Plastics - Development Of Methods, Christopher Stolinski

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

Due to the increased use of 3D printed acrylonitrile butadiene styrene (ABS) plastic parts, a way to quantify the failure energy (energy needed to initiate cracking) is needed. Impact tests at high rates of loading are performed to determine failure energy. Throughout testing, specimens are monitored with high speed cameras to perform camera-based deformation measurements. Data acquisition and processing methods to calculate failure energy using crack opening displacement, and loading rates are developed to enable further use by Dr. Ryan Berke’s lab at Utah State University.


Study Of The 3Ω Measurement Of The In-Plane And The Cross-Plane Thermal Properties On Anisotropic Thin Film Materials, Daxi Zhang Dec 2018

Study Of The 3Ω Measurement Of The In-Plane And The Cross-Plane Thermal Properties On Anisotropic Thin Film Materials, Daxi Zhang

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Due to the size of the nano-scale and micro-scale materials, traditional method for measuring the thermal properties of the bulk materials cannot be applied. The 3 Omega Method was developed by D. G. Cahill in the early 90s. It was used extensively to measure the thermal properties of thin film dielectric materials. Compare with other simulations or experimental methods, the 3 Omega Method has many advantages. Previous research has indicate that the 3 Omega method is capable of measuring the cross-plane thermal conductivity of thin film materials. In extension, an alternative improvement for measurement of the in-plane thermal conductivity and …


Assessing The Limitations Of Effective Number Of Samples For Finding The Uncertainty Of The Mean Of Correlated Data, Barton L. Smith, Douglas R. Neal, Mark Feero, Geordie Richards Nov 2018

Assessing The Limitations Of Effective Number Of Samples For Finding The Uncertainty Of The Mean Of Correlated Data, Barton L. Smith, Douglas R. Neal, Mark Feero, Geordie Richards

Mechanical and Aerospace Engineering Faculty Publications

The efficacy of recent and classical theories on the uncertainty of the mean of correlated data have been investigated. A variety of very large data sets make it possible to show that, under circumstances that are often too expensive to achieve, the integral time scale can be used to determine the effective number of independent samples, and therefore the uncertainty of the mean. To do so, the data set must be sufficiently large that it may be divided into many records, each of which is many integral time scales long. In this circumstance, all lags of the autocorrelation should be …


Fluted Films, Nathan B. Spiers, Mohammad M. Mansoor, Jesse Belden, Randy Craig Hurd, Zhao Pan, Tadd T. Truscott Oct 2018

Fluted Films, Nathan B. Spiers, Mohammad M. Mansoor, Jesse Belden, Randy Craig Hurd, Zhao Pan, Tadd T. Truscott

Mechanical and Aerospace Engineering Faculty Publications

This paper is associated with a poster winner of a 2017 APS/DFD Milton van Dyke Award for work presented at the DFD Gallery of Fluid Motion. The original poster is available from the Gallery of Fluid Motion, https://doi.org/10.1103/APS.DFD.2017.GFM.P0030


Thermal And Stress Analysis Of Nasa X-57 Maxwell Battery Pack, Bhumika Nautiyal Aug 2018

Thermal And Stress Analysis Of Nasa X-57 Maxwell Battery Pack, Bhumika Nautiyal

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

Air travel has long been an established way of life for millions around the world, but innovation continues to push the boundaries of what is possible in the skies. While aviation has made it easy to travel long distances, the need to lower emissions from flights is pressing. The European Commission has described aviation as “one of the fastest-growing sources of greenhouse gas emissions.”

Airplanes release around 500 million tons of carbon dioxide into the atmosphere each year, representing a significant contribution to global warming. The very concept of a fossil-fuel-powered airplane needs to evolve to fully mitigate the impacts …


Ultraviolet Diffraction Assisted Image Correlation (Uv-Daic) For Single-Camera 3d Strain Measurement At Extreme Temperatures, Ethan K. Nickerson Aug 2018

Ultraviolet Diffraction Assisted Image Correlation (Uv-Daic) For Single-Camera 3d Strain Measurement At Extreme Temperatures, Ethan K. Nickerson

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Digital Image Correlation (DIC) is a technique which uses images taken before and after deformation to determine displacement and strain data over the surface of the sample. In order to obtain this data for both in-plane as well as out-of-plane direction, multiple views of the sample are required. Typically, this is accomplished using multiple cameras, but it is possible to use diffraction gratings to bend the light coming from the specimen in order to allow a single camera to capture multiple views. This technique is referred to as Diffraction Assisted Image Correlation (DAIC) and has been previously demonstrated at room …


Water Entry Cavity Dynamics, Nathan B. Speirs Aug 2018

Water Entry Cavity Dynamics, Nathan B. Speirs

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

When a sphere or a stream of water hits the surface of a pool of water and enters a crater or air cavity often forms. This topic has been studied, both formally and informally, for a long time. This dissertation investigates four areas of water impact that are still poorly understood using high-speed photography. First, it examines a stream of droplets impacting on a pool of water, similar to a faucet drizzling into a full bucket. For these types of impacts we predict the depth, diameter, velocity, and shape of the cavities that the droplet stream forms. Second, it examines …


Uncertainty Quantification And Sensitivity Analysis Of Multiphysics Environments For Application In Pressurized Water Reactor Design, Cole David Blakely Aug 2018

Uncertainty Quantification And Sensitivity Analysis Of Multiphysics Environments For Application In Pressurized Water Reactor Design, Cole David Blakely

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The most common design among U.S. nuclear power plants is the pressurized water reactor (PWR). The three primary design disciplines of these plants are system analysis (which includes thermal hydraulics), neutronics, and fuel performance. The nuclear industry has developed a variety of codes over the course of forty years, each with an emphasis within a specific discipline. Perhaps the greatest difficulty in mathematically modeling a nuclear reactor, is choosing which specific phenomena need to be modeled, and to what detail.

A multiphysics computational environment provides a means of advancing simulations of nuclear plants. Put simply, users are able to combine …


Design Survey Of Laminated Composite I-Beam, Mrinmoy Saha Aug 2018

Design Survey Of Laminated Composite I-Beam, Mrinmoy Saha

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

Composite I-beams are popular for high-strength low-weight applications. Learning the macro-mechanics and designing the composite I-beam properly are necessary. In this report, a design overview of the composite I-beam is discussed which is based on classical lamination theory where it includes the homogenization approach, the plane stress assumption and the Kirchhoff hypothesis. Using these assumptions, a method was developed to come up with the effective material properties of a beam. Formulas to calculate maximum deflection and maximum bending stress and shear stress and the stress concentration at the connection of web-flange are discussed which describe ways for designing and manufacturing …


A Non-Equilibrium Molecular Dynamics Study Of The Effects Of Helium Bubbles On The Thermal Conductivity Of Zrc, Tate Shorthill Aug 2018

A Non-Equilibrium Molecular Dynamics Study Of The Effects Of Helium Bubbles On The Thermal Conductivity Of Zrc, Tate Shorthill

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

Zirconium carbide (ZrC) has been proposed as a potential improvement to nuclear fuel cladding. As such, it is important to characterize its physical properties, particularly those relating to thermal energy transport. Reactor conditions are known to damage fuel microstructure over time. While research has been conducted on undamaged and damaged ZrC, some areas of interest remain. Fission products, such as helium, can accumulate in pores within the fuel microstructure. Such a case has yet to be characterized in ZrC fuel cladding.

A non-equilibrium molecular dynamics model was developed to characterize the thermal properties of ZrC. Fourier’s Law allows the thermal …


The Effects Of Geometric And Stoichometric Change In Nanoparticles And Materials On Lattice Thermal Conductivity, W. Tanner Yorgason Aug 2018

The Effects Of Geometric And Stoichometric Change In Nanoparticles And Materials On Lattice Thermal Conductivity, W. Tanner Yorgason

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Thermal transport properties are critical for applications ranging from thermal management to energy conversion. Passive thermal management has been an area of study for over a century and has only grown as technology has advanced because it requires no additional energy to remove heat. Changing the nanostructure of the materials involved in passive heat transfer methods, either by geometric changes or stoichiometric changes, can greatly improve the effectiveness of this heat transfer method. In order to explore this further, this work employs LAMMPS molecular dynamics (MD) simulation software to calculate the lattice thermal conductivity (λp) of a …


Catalytic Augmentation Of An Arc-Ignited Hydrogen Peroxide/Abs Hybrid Rocket System, Stephen A. Whitmore, Christopher J. Martinez Jul 2018

Catalytic Augmentation Of An Arc-Ignited Hydrogen Peroxide/Abs Hybrid Rocket System, Stephen A. Whitmore, Christopher J. Martinez

Mechanical and Aerospace Engineering Faculty Publications

The authors have collaborated with an industry partner to develop a prototype upper stage for a dedicated nano-launch vehicle. In addition to providing sufficient impulse for orbit insertion, the unique motor system also provides capability for multiple restarts; allowing operation as an orbital maneuvering thruster. The hybrid motor design uses 85%-90% hydrogen peroxide solution and 3-D printed ABS as propellants. In the original system design the peroxide catalyst bed was completely removed and a patented arc-ignition system thermally ignited the propellants. The thermal ignition system was effective but resulted in a combustion latency of approximately 1-second, reducing overall performance and …


Methods For The Aerostructural Design And Optimization Of Wings With Arbitrary Planform And Payload Distribution, Jeffrey D. Taylor May 2018

Methods For The Aerostructural Design And Optimization Of Wings With Arbitrary Planform And Payload Distribution, Jeffrey D. Taylor

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The design of an aircraft wing often involves the use of mathematical methods for simultaneous aerodynamic and structural design. The goal of many of these methods is to minimize the drag on the wing. A variety of computer models exist for this purpose, but some require the use of expensive time and computational resources to give meaningful results. As an alternative, some mathematical methods have been developed that give reason ably accurate results without the need for a computer. However, most of these methods can only be used for wings with specific shapes and payload distributions. In this thesis, a …


Characterization Of Carbon Nanostructured Composite Film Using Photothermal Measurement Technique, Kurt E. Harris May 2018

Characterization Of Carbon Nanostructured Composite Film Using Photothermal Measurement Technique, Kurt E. Harris

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Graphene is a form of carbon with unique thermal and structural properties, giving it high potential in many applications, from electronics to driveway heating. Advanced fabrication techniques putting small, graphene-like structures in a polymer matrix could allow for incorporation of some of the benefits of graphene into very lightweight materials, and allow for broader commercialization. Measuring the thermal properties of these thin-film samples is a technical capability in need of development for use with the specific specimens used in this study. Relating those thermal properties to the microstructural composition was the focus of this work.

Several conclusions could be drawn …


A Propeller Model Based On A Modern Numerical Lifting-Line Algorithm With An Iterative Semi-Free Wake Solver, Zachary S. Montgomery May 2018

A Propeller Model Based On A Modern Numerical Lifting-Line Algorithm With An Iterative Semi-Free Wake Solver, Zachary S. Montgomery

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

A fundamental aerodynamic analysis technique for a single straight fixed wing has been expounded upon and turned into a modern technique that can analyze multiple wings of more realistic shapes common on aircraft. This modern technique is extended further to apply towards propellers. A method to overcome propeller analysis problems at low airspeeds is presented. This method is compared to more traditional propeller analysis techniques.


Distribution Of Particle Image Velocimetry (Piv) Errors In A Planar Jet, Jaron A. Howell May 2018

Distribution Of Particle Image Velocimetry (Piv) Errors In A Planar Jet, Jaron A. Howell

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Particle Image Velocimetry (PIV) is an optical fluid measurement technique used to obtain velocity measurements. Two PIV systems were used to capture data simultaneously and measurement error for the MS PIV system is calculated. An investigation of error distribution is performed to determine when uncertainty estimations fail for the CS PIV-UQ method. Investigation of when results from multi pass PIV processing are achieve were performed so that reliable uncertainty estimations are produced with the CS method. An investigation was also performed which determined that error distributions in PIV systems are correlated with flow shear and particle seeding density. Correlation of …


Numerical Evaluation Of Energy Release Rate At Material Interfaces For Fatigue Life Predictions, Robert L. Hendrickson May 2018

Numerical Evaluation Of Energy Release Rate At Material Interfaces For Fatigue Life Predictions, Robert L. Hendrickson

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Composite materials are becoming popular in almost all industries. Carbon-fiber and glass-fiber composites are used in aircraft, sports equipment, boats, prosthetics, and wind turbine blades. In all these applications, the composites are subjected to different loads. Loads can take the form of impact or cyclic/fatigue loading, both of which decrease the strength of composites as micro-cracks grow through the composite. Composite laminates are made up of fiber plies (thin layers of fiber) and the fibers are surrounded by a resin like epoxy. It is common for laminates to fail because of delamination growth (plies peeling apart). Small delaminations do not …


Importance Of Exposure Time On Digital Image Correlation (Dic) At Extreme Temperatures, Thinh Quang Thai May 2018

Importance Of Exposure Time On Digital Image Correlation (Dic) At Extreme Temperatures, Thinh Quang Thai

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Extreme temperatures have increasingly played an important role in engineering applications, including leading edges during hypersonic flight, spacecraft re-entry, and propulsion systems. In order to design for such thermo-mechanical conditions, materials must be characterized using suitable measurement methods. DIC is a popular and versatile method in full-field measurement. In brief, DIC compares images of a sample between its undeformed and deformed state in order to get displacement and strain field maps. Since the images are acquired from digital cameras, it is important to have high contrast images for meaningful correlation. Exposure time is a pivotal camera setting relating to camera …


A High-Magnification Uv Lens For High-Temperature Optical Strain Measurements, Robert S. Hansen May 2018

A High-Magnification Uv Lens For High-Temperature Optical Strain Measurements, Robert S. Hansen

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

Digital Image Correlation (DIC) is an experimental method used to produce full-field strain maps of specimens undergoing deformation. In this measurement, images of a specimen are taken before and after mechanical and thermal loading, then software is used to track deformation and compute strains. DIC has been recently adapted for high-temperature tests by using ultraviolet (UV) range cameras, lenses, and filters to produce the images.

Application of DIC to small length scales and at high temperatures can be performed with proper equipment. However, for these measurements, there is no commercially available high-magnification lens that will allow images to be taken …


Arm Position Measurement, Silvia Smith May 2018

Arm Position Measurement, Silvia Smith

Undergraduate Honors Capstone Projects

This capstone project addresses the design and implementation of a device that measures arm position and speed. The device is intended for use in conducting further research on the motion of limbs affected by cerebral palsy, and in the prototypic development of a device that could help control such motion, thereby allowing a user to accomplish daily tasks. This project includes the design of an appropriate experiment and testing apparatus to explore possible solution prototypes, along with suggested methods to perform analysis of the experiment results. This is considered to be the fundamental research necessary to better understand the scope …


Software Defined Radio System For Cubesat Communication, Tyler Gardner May 2018

Software Defined Radio System For Cubesat Communication, Tyler Gardner

Undergraduate Honors Capstone Projects

Cube satellites, or CubeSats, are small satellites designed around a base unit cube of 10 cm by 10 cm by 10 cm which is commonly referred to as a one unit, or 1 U, CubeSat. The modular architecture of CubeSats allows multiple 1 U frames to be stacked together to form a larger (1.5U, 2U, usually up to 6U) frame as needed. Because CubeSats are cheaper to develop and deploy in orbit than larger satellites, they have become increasingly common for academic, amateur, commercial, and scientific applications over the past five to ten years. There is potential that CubeSats will …


Rickshaw For Common Ground, Marcus Dallin Cronin May 2018

Rickshaw For Common Ground, Marcus Dallin Cronin

Undergraduate Honors Capstone Projects

For this project my team and I were asked to design and manufacture a rickshaw, a device which will enable disabled individuals to experience outdoor hiking trails, for a non-profit organization based in Logan, Utah called Common Ground. Common Ground specializes in helping people with disabilities experience the outdoors in ways that would otherwise be impossible. The rickshaw will help Common Ground achieve its goals by providing them with a way to transport people with disabilities on moderately difficult hiking trails (i.e. Wind Caves Trail in Logan Canyon). In the past, Common Ground had use of a rickshaw that had …


The Water Entry Of Multi-Droplet Streams And Jets, Nathan B. Spiers, Zhao Pan, Jesse Belden, Tadd T. Truscott Apr 2018

The Water Entry Of Multi-Droplet Streams And Jets, Nathan B. Spiers, Zhao Pan, Jesse Belden, Tadd T. Truscott

Mechanical and Aerospace Engineering Faculty Publications

Water entry has been studied for over a century, but few studies have focused on multiple droplets impacting on a liquid bath sequentially. We connect multi-droplet streams, jets and solid objects with physical-based scaling arguments that emphasize the intrinsically similar cavities. In particular, the cavities created by the initial impact of both droplet streams and jets on an initially quiescent liquid pool exhibit the same types of cavity seal as hydrophobic spheres at low Bond number, some of which were previously unseen for jets and droplet streams. Low-frequency droplet streams exhibit an additional three new cavity seal types unseen for …


Water Main Break Rates In The Usa And Canada: A Comprehensive Study, Steven Folkman Mar 2018

Water Main Break Rates In The Usa And Canada: A Comprehensive Study, Steven Folkman

Mechanical and Aerospace Engineering Faculty Publications

The economic prosperity of modern cities is based on a complex infrastructure network located both above and below ground. A critical component to public health and economic well-being is our drinking water which is brought to the tap through an elaborate network of underground pipe distribution systems. Since most of this infrastructure is underground, it is out of sight and often neglected. Empirical data on water main breaks helps utilities in their repair and replacement decision making processes in order to deliver clean drinking water to their customers at an affordable price. This report documents the survey results of water …


Les Taux De Rupture De Conduites D’Eau Aux États-Unis Et Au Canada : Une Étude Complète, Steven Folkman Mar 2018

Les Taux De Rupture De Conduites D’Eau Aux États-Unis Et Au Canada : Une Étude Complète, Steven Folkman

Mechanical and Aerospace Engineering Faculty Publications

La prospérité économique des villes modernes est basée sur un réseau d’infrastructures complexe à la fois en surface et sous la terre. Un élément essentiel pour la santé publique et le bien-être économique est notre eau potable, qui est acheminée jusqu’à notre robinet à travers un réseau complexe de conduites de distribution d’eau souterraines. Étant donné que la plus grande partie de cette infrastructure se trouve sous terre, elle est hors de vue et souvent négligée. Disposer de données empiriques sur des ruptures de conduites d’eau aide les services publics avec leurs processus de prises de décision quant aux réparations …


Numerical Algorithm For Wing-Structure Design, Jeffrey D. Taylor, Douglas F. Hunsaker, James J. Joo Jan 2018

Numerical Algorithm For Wing-Structure Design, Jeffrey D. Taylor, Douglas F. Hunsaker, James J. Joo

Mechanical and Aerospace Engineering Student Publications and Presentations

Low-fidelity aerostructural optimization routines have often focused on determining the optimal spanloads for a given wing configuration. Several analytical approaches have been developed that can predict optimal lift distributions on rectangular wings with a specific payload distribution. However, when applied to wings of arbitrary geometry and payload distribution, these approaches fail. Increasing the utility and accuracy of these analytical methods can result in important benefits during later design phases. In this paper, an iterative algorithm is developed that uses numerical integration to predict the distribution of structural weight required to support the bending moments on a wing with arbitrary geometry …