Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Mechanical Engineering

A Novel Splitting Beam Laser Extensometer Technique For Kolsky Tension Bar Systems, Colin Loeffler Dec 2018

A Novel Splitting Beam Laser Extensometer Technique For Kolsky Tension Bar Systems, Colin Loeffler

Mechanical Engineering Research Theses and Dissertations

The Kolsky (Split Hopkinson) Bar has become a well-known and established experimental technique for characterizing the mechanical behavior of materials subjected to dynamic loading conditions. Kolsky bar based experimental techniques facilitate the application of controlled and repeatable dynamic loading conditions to a specimen as well as the high resolution measurement of the resulting mechanical response. In recent decades the technique has been refined and adapted to provide more complex dynamic stress-states beyond uniaxial compression. However, the increasing complexity of the experimental apparatus introduces uncertainty to the traditional specimen deformation measurement techniques.

In this thesis, a direct non-contact optical measurement technique …


Optical Micro-Seismometer Based On Evanescent Field Perturbation Of Whispering Gallery Modes, Jaime Da Silva Dec 2018

Optical Micro-Seismometer Based On Evanescent Field Perturbation Of Whispering Gallery Modes, Jaime Da Silva

Mechanical Engineering Research Theses and Dissertations

This thesis proposes a light-weight, compact, and accurate optical micro-seismometer that could be used in many applications, such as planetary exploration. The sensor proposed here is based on the principle of whispering gallery optical mode (WGM) resonance shifts of a dielectric micro-resonator due to disturbances of its evanescent field. The micro-seismometer could be used in place of the traditional bulky seismometers. The design of a waveguide-resonator and mechanical structure to disturb the evanescent field are presented. A proof-of-concept a seismometer model that uses a 5µm ring resonator is numerically tested with actual seismic data. The results show that a WGM-based …


Non-Classical Plate Models Incorporating Microstructure And Surface Energy Effects: Their Variational Formulations And Applications, Gongye Zhang Dec 2018

Non-Classical Plate Models Incorporating Microstructure And Surface Energy Effects: Their Variational Formulations And Applications, Gongye Zhang

Mechanical Engineering Research Theses and Dissertations

In this dissertation research, new non-classical models for Kirchhoff and Mindlin plates are developed and applied to study band gaps for flexural wave propagation in composite plate structures.

In Chapter 2, a new non-classical model for a Kirchhoff plate resting on an elastic foundation is developed using a modified couple stress theory, a surface elasticity theory and a two-parameter elastic foundation model. A variational formulation based on Hamilton’s principle is employed, which leads to the simultaneous determination of the equations of motion and the complete boundary conditions and provides a unified treatment of the microstructure, surface energy and foundation effects. …


Molecular Dynamics Studies On Nanoscale Confined Liquids, Alper Celebi Oct 2018

Molecular Dynamics Studies On Nanoscale Confined Liquids, Alper Celebi

Mechanical Engineering Research Theses and Dissertations

Liquid transport in nanochannels have been attracting great interests, especially for last two decades, owing to its potential applicability in various fields including biochemistry, medical science and engineering. For exploring and generating new ideas in the field of nanofluidics, molecular simulation techniques have become an ideal way due to the experimental challenges impeding the field of nanofluidics in fabrication and measurements.

In this dissertation, we perform molecular dynamics simulations to investigate liquid transport behavior in nanoscale channels. The expanse of this dissertation concerns several fundamental topics in nanoscale liquid transport phenomena such as liquid properties in nanoscale confinements, interfacial flows …


My Catalyst, Gabrielle Gambino Lyon Jul 2018

My Catalyst, Gabrielle Gambino Lyon

Celebration of Learning

Over the course of my internship and shadow program with Pepper Lawson Construction and Ziegler Cooper Architects, I was able to explore the various career paths involved in the design, construction, and civil engineering fields. My work on the construction site of a high-rise apartment building located in the heart of Houston, TX allowed me first-hand experience working and learning alongside project engineers, contractors, building developers, and the construction team.

This project was the perfect confluence of my main areas of interest: structural, mechanical, civil, and environmental engineering, as well as architecture. My daily work consisted of on-site walk throughs, …


The Vessel For Autonomous Research Underwater (The Varuna), Tyler Briles, Shae Connor, Erin Guthrie, Anthony Jackson, Madeleine Peauroi Jun 2018

The Vessel For Autonomous Research Underwater (The Varuna), Tyler Briles, Shae Connor, Erin Guthrie, Anthony Jackson, Madeleine Peauroi

Interdisciplinary Design Senior Theses

Humans are intimately connected to the Earth’s ocean, and yet only 5% of it has been explored. Learning more about marine life and ocean chemistry can only improve our stewardship efforts. The addition of an Autonomous Underwater Vehicle to the Santa Clara University Robotic Systems Laboratory’s collection of marine robots will contribute to this quest for knowledge. It will assist researchers by providing a low-cost, easy-to-use, portable, reliable, and safe alternative to operator-controlled vehicles. This report describes our motivations for this project, the decisions we made in the design and manufacturing of the VARUNA, and tradeoff analyses of possible options. …


Enhancing Mobility And Independence Of Wheelchair Users, Briar Blake, Paul Nauleau Jun 2018

Enhancing Mobility And Independence Of Wheelchair Users, Briar Blake, Paul Nauleau

Interdisciplinary Design Senior Theses

Conditions as simple as a leg fracture or more severe impairments such as paralysis and stroke may confine a person to a wheelchair. Wheelchairs help people with limited mobility transport themselves to different locations, but do not help the person leave the wheelchair. Users would need to do this to enter a car, use the restroom, take a shower, and sit at a table comfortably with family. The following design is a wheelchair attachment that serves to provide the user with increased mobility and independence. Wheelchair users struggle to get into and out of their chairs due to the unassisted …


Powering A Biosensor Using Wearable Thermoelectric Technology, Anneliese Bals, Noah Barnes, Rafael Bravo, Nicolas Garcia, Joseph O'Bryan, Dylan Santana Jun 2018

Powering A Biosensor Using Wearable Thermoelectric Technology, Anneliese Bals, Noah Barnes, Rafael Bravo, Nicolas Garcia, Joseph O'Bryan, Dylan Santana

Interdisciplinary Design Senior Theses

Wearable medical devices such as insulin pumps, glucose monitors, hearing aids, and electrocardiograms provide necessary medical aid and monitoring to millions of users worldwide. These battery powered devices require battery replacement and frequent charging that reduces the freedom and peace of mind of users. Additionally, the significant portion of the world without access to electricity is unable to use these medical devices as they have no means to power them constantly. Wearable thermoelectric power generation aims to charge these medical device batteries without a need for grid power.

Our team has developing a wristband prototype that uses body heat, ambient …


Soft-Microrobotics: The Manipulation Of Alginate Artificial Cells, Samuel Sheckman May 2018

Soft-Microrobotics: The Manipulation Of Alginate Artificial Cells, Samuel Sheckman

Mechanical Engineering Research Theses and Dissertations

In this work, the approach to the manipulation of alginate artificial cell soft-microrobots, both individually and in swarms is shown. Fabrication of these artificial cells were completed through centrifugation, producing large volumes of artificial cells, encapsulated with superparamagnetic iron oxide nanoparticles; these artificial cells can be then externally stimulated by an applied magnetic field. The construction of a Permeant Magnet Stage (PMS) was produced to manipulate the artificial cells individually and in swarms. The stage functionalizes the permanent magnet in the 2D xy-plane. Once the PMS was completed, Parallel self-assembly (Object Particle Computation) using swarms of artificial cells in complex …


A Microresonator-Based Laser Doppler Velocity Sensor For Interplanetary Atmospheric Re-Entry, Benjamin Wise May 2018

A Microresonator-Based Laser Doppler Velocity Sensor For Interplanetary Atmospheric Re-Entry, Benjamin Wise

Mechanical Engineering Research Theses and Dissertations

In this thesis, a laser velocity sensor concept based on optical microresonators is presented and the application to spacecraft atmospheric entry is explored. The concept is based on the measurement of Doppler shift of back-scattered laser light. Specifically, the Doppler shift is detected by observing the whispering gallery optical modes (WGM) of a dielectric microresonator excited by the back scattered light from particulates and gas molecules. The microresonator replaces the typical Fabry-Perot interferometer and CCD camera system, thereby significantly reducing the size and weight of the overall detection system. This thesis presents proof-of-concept results for this measurement approach. The Doppler …


Blunt And Ballistic Impacts On Human Head Models: An Analytical And Numerical Study, Yongqiang Li May 2018

Blunt And Ballistic Impacts On Human Head Models: An Analytical And Numerical Study, Yongqiang Li

Mechanical Engineering Research Theses and Dissertations

Head injuries, as a leading cause of death, have become a major health care issue for civilians and soldiers. There has been an urgent need to understand mechanisms of such injuries. The objective of this dissertation research is to study some head injuries and related mechanisms using analytical and computational models.

In Chapter 2, a new analytical (non-linear) model for the impact of a solid sphere on a fluid-filled spherical shell is developed by including the stress wave propagation effect in addition to the Hertzian contact deformations and the shell membrane and bending actions. A simplified (linearized) model incorporating the …


Fabrication And Characterizations Of Lithium Aluminum Titanate Phosphate Solid Electrolytes For Li-Based Batteries, Anurag Yaddanapudi Jan 2018

Fabrication And Characterizations Of Lithium Aluminum Titanate Phosphate Solid Electrolytes For Li-Based Batteries, Anurag Yaddanapudi

Browse all Theses and Dissertations

Demands for electric vehicles and flexible electronics have escalated research in developing high-performance lithium batteries based on solid-state chemistry. The present work is to develop highly-conductive and flexible solid electrolyte for such applications. Lithium aluminum titanate phosphate (LATP or Li1.3Al0.3Ti1.7(PO4)3), both in ceramic pellets and free-standing composite membranes, have been fabricated. The crystal structure, surface morphology, and ionic conductivity are systematically studied. LATP pellets are prepared using solid state reaction approach. The results indicate that calcine temperature has significant impacts on the phase impurity and sintering temperature and duration have more impacts on the grain size and porosity of LATP …


Neuromuscular Reflex Control For Prostheses And Exoskeletons, Sandra K. Hnat Jan 2018

Neuromuscular Reflex Control For Prostheses And Exoskeletons, Sandra K. Hnat

ETD Archive

Recent powered lower-limb prosthetic and orthotic (P/O) devices aim to restore legged mobility for persons with an amputation or spinal cord injury. Though various control strategies have been proposed for these devices, specifically finite-state impedance controllers, natural gait mechanics are not usually achieved. The goal of this project was to invent a biologically-inspired controller for powered P/O devices. We hypothesize that a more muscle-like actuation system, including spinal reflexes and vestibular feedback, can achieve able-bodied walking and also respond to outside perturbations. The outputs of the Virtual Muscle Reflex (VMR) controller are joint torque commands, sent to the electric motors …


Non-Intrusive Optical Measurement Of Electron Temperature In Near Field Plume Of Hall Thruster, Peter J. Urban Jan 2018

Non-Intrusive Optical Measurement Of Electron Temperature In Near Field Plume Of Hall Thruster, Peter J. Urban

ETD Archive

Currently there is a large interest in the use of more efficient means of propulsion in long term missions due to the costs and difficulties associated with placing and maintaining the needed fuel for conventional chemical systems in orbit. Mass reduction of upper stages will return large returns due to the great reduction in required lower stage fuel. Due to these factors, alternatives are undergoing active research, though this paper is concerned with the area of electrical propulsion. Electric propulsion is broadly defined as propulsion where the energization of the exhaust occurs via application of electromagnetic fields as opposed to …


Predictive Simulations Of Gait And Their Application In Prosthesis Design, Anne D. Koelewijin Jan 2018

Predictive Simulations Of Gait And Their Application In Prosthesis Design, Anne D. Koelewijin

ETD Archive

Predictive simulations predict human gait by solving a trajectory optimization problem by minimizing energy expenditure. These simulations could predict the effect of a prosthesis on gait before its use. This dissertation has four aims, to show the application of predictive simulations in prosthesis design and to improve the quality of predictive simulations. Aim 1 was to explain joint moment asymmetry in the knee and hip in gait of persons with a transtibial amputation (TTA gait). Predictive simulations showed that an asymmetric gait required less effort. However, a small effort increase yielded a gait with increased joint moment symmetry and reduced …


Advanced Manufacturing Of Titanium Alloys For Biomedical Applications, Nicholas C. Mavros Jan 2018

Advanced Manufacturing Of Titanium Alloys For Biomedical Applications, Nicholas C. Mavros

ETD Archive

In metallurgy, Titanium has been a staple for biomedical purposes. Its low toxicity and alloying versatility make it an attractive choice for medical applications. However, studies have shown the difference in elastic modulus between Titanium alloys (116 GPa) and human bone (40-60 GPa) contribute to long term issues with loose hardware fixation. Additionally, long term studies have shown elements such as Vanadium and Aluminum, which are commonly used in Ti-6Al-4V biomedical alloys, have been linked to neurodegenerative diseases like Alzheimers and Parkinsons. Alternative metals known to be less toxic are being explored as replacements for alloying elements in Titanium alloys. …


An Anisotropic Constitutive Model For Nuclear Grade Graphite, James Christopher Jan 2018

An Anisotropic Constitutive Model For Nuclear Grade Graphite, James Christopher

ETD Archive

Graphite material is used extensively in nuclear reactors however the material has a limited strain range for elastic behavior. This provides the motivation to derive a constitutive model that captures the inelastic deformations exhibited by this material. This dissertation first presents details of an isotropic constitutive model derived using continuum principles of engineering mechanics that accounts for different inelastic behavior in tension and compression. An inelastic dissipation function was developed using an integrity basis proposed by Green and Mkrtichian (1977) for the isotropic version of the model. This isotropic model was then extended to capture anisotropic stress-strain behavior using directional …


Sandia Senior Design Collaboration: Vacuum Sensor Design, James L. Valerio, Eric J. Black, Joseph P. Bednarz, David R. Warther Jan 2018

Sandia Senior Design Collaboration: Vacuum Sensor Design, James L. Valerio, Eric J. Black, Joseph P. Bednarz, David R. Warther

Williams Honors College, Honors Research Projects

Sandia National Laboratories has requested a fully mechanical device to close a circuit after launch has occurred and the device enters a vacuum. Intended for applications in rockets and missiles, the device must fit in a 36 degree wedge with a 6.8 inch radius that is 6 inches in height and be ready to bolt onto a rocket. The pressure switch must be prevented from actuating until a launch acceleration ranging from 20 to 27g is detected. The pressure switch must close the circuit after a pressure of 10-1 Torr is reached and before a pressure of 10-6 …


Constitutive Modeling Of Creep In Leaded And Lead-Free Solder Alloys Using Constant Strain Rate Tensile Testing, Eric Thomas Stang Jan 2018

Constitutive Modeling Of Creep In Leaded And Lead-Free Solder Alloys Using Constant Strain Rate Tensile Testing, Eric Thomas Stang

Browse all Theses and Dissertations

Environmental and safety concerns have necessitated a phase-out of lead-based alloys, which are often used in electronics solder applications. In order to properly assess suitable replacement materials, it is necessary to understand the deformation mechanisms relevant to the application. In the case of electronics solder, creep is an important mechanism that must be considered in the design of reliable devices and systems. In this study, Power-Law and Garofalo constitutive creep models were derived for two medium temperature solder alloys. The first alloy is known by the commercial name Indalloy 236 and is a quaternary alloy of lead, antimony, tin, and …


Identification Of Nonlinear Constitutive Properties Of Damping Coatings, Mackenzie E. Tidball Jan 2018

Identification Of Nonlinear Constitutive Properties Of Damping Coatings, Mackenzie E. Tidball

Browse all Theses and Dissertations

Scheduled and unscheduled maintenance actions are a significant cost for gas turbines. Advanced life prediction capabilities help to mitigate these costs. However, the protective thermal and damping coatings applied to the turbine rotors which can help significantly extend component life simultaneously increase the difficulty of modeling the behavior of the components due to the nonlinearity they introduce.This research approaches modeling and analysis of nonlinear coatings for turbine blades and blisks using a nonlinear constitutive law model for the coating. The theoretical frequency response of the nonlinear system is solved for using the harmonic balance method. The coefficients of the nonlinear …


Layer-To-Layer Physical Characteristics And Compression Behavior Of 3d Printed Acrylonitrile Butadiene Styrene Metastructures Fabricated Using Different Process Parameters, Sivani Patibandla Jan 2018

Layer-To-Layer Physical Characteristics And Compression Behavior Of 3d Printed Acrylonitrile Butadiene Styrene Metastructures Fabricated Using Different Process Parameters, Sivani Patibandla

Browse all Theses and Dissertations

Three-dimensional (3D) printing, a subset of additive manufacturing, is currently being explored heavily for actual part fabrication due to its ability to create complex objects with intricate internal features. There are several 3D printing technologies; however, the extrusion-based technology such as fused deposition modeling (FDM) is the widely used one owing to its low cost. The FDM method can be used to fabricate parts with different fill densities, fill patterns, and process parameters such as extruder temperature and print speed. In this research, influence of process parameters such as extruder temperature and speed on the physical characteristics such as the …