Open Access. Powered by Scholars. Published by Universities.®

Electrical and Electronics Commons

Open Access. Powered by Scholars. Published by Universities.®

VLSI and Circuits, Embedded and Hardware Systems

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 214

Full-Text Articles in Electrical and Electronics

Reinventing Integrated Photonic Devices And Circuits For High Performance Communication And Computing Applications, Venkata Sai Praneeth Karempudi Jan 2024

Reinventing Integrated Photonic Devices And Circuits For High Performance Communication And Computing Applications, Venkata Sai Praneeth Karempudi

Theses and Dissertations--Electrical and Computer Engineering

The long-standing technological pillars for computing systems evolution, namely Moore's law and Von Neumann architecture, are breaking down under the pressure of meeting the capacity and energy efficiency demands of computing and communication architectures that are designed to process modern data-centric applications related to Artificial Intelligence (AI), Big Data, and Internet-of-Things (IoT). In response, both industry and academia have turned to 'more-than-Moore' technologies for realizing hardware architectures for communication and computing. Fortunately, Silicon Photonics (SiPh) has emerged as one highly promising ‘more-than-Moore’ technology. Recent progress has enabled SiPh-based interconnects to outperform traditional electrical interconnects, offering advantages like high bandwidth density, …


Low-Power, Event-Driven System On A Chip For Charge Pulse Processing Applications, Joseph A. Schmitz Dec 2023

Low-Power, Event-Driven System On A Chip For Charge Pulse Processing Applications, Joseph A. Schmitz

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

This dissertation presents an electronic architecture and methodology capable of processing charge pulses generated by a range of sensors, including radiation detectors and tactile synthetic skin. These sensors output a charge signal proportional to the input stimulus, which is processed electronically in both the analog and digital domains. The presented work implements this functionality using an event-driven methodology, which greatly reduces power consumption compared to standard implementations. This enables new application areas that require a long operating time or compact physical dimensions, which would not otherwise be possible. The architecture is designed, fabricated, and tested in the aforementioned applications to …


A Case Study In Cmos Design Scaling For Analog Applications: The Ringamp Ldo, Steven Corum Dec 2023

A Case Study In Cmos Design Scaling For Analog Applications: The Ringamp Ldo, Steven Corum

Masters Theses

As CMOS process nodes scale to smaller feature sizes, process optimizations are made to achieve improvements in digital circuit performance, such as increasing speed and memory, while decreasing power consumption. Unfortunately for analog design, these optimizations usually come at the expense of poorer transistor performance, such as reduced small signal output resistance and increased channel length modulation. The ring amplifier has been proposed as a digital solution to the analog scaling problem, by configuring digital inverters to function as analog amplifiers through deadzone biasing. As digital inverters naturally scale, the ring amplifier is a promising area of exploration for analog …


A Portable, Low Power Radiation Detection And Identification System For High Count Rate, Long Term Monitoring, Samuel J. Murray Aug 2023

A Portable, Low Power Radiation Detection And Identification System For High Count Rate, Long Term Monitoring, Samuel J. Murray

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

This dissertation presents the design of a novel radiation detection and identification system that can operate continuously over a period of 8 days while detecting at 30,000 counts per second, consuming a total of 11 mW. The entire system is highly integrated, containing a gamma ray detector, a high voltage detector power supply, and a multichannel analyzer (MCA) system-on-a-chip (SoC), which are all combined into a compact form using a multi-level, configurable printed circuit board design. The MCA SoC, fabricated using a 65 nm CMOS technology, features two enabling resources to allow low power detections at high count rates for …


Characterization Of Low Power Hfo2 Based Switching Devices For In-Memory Computing, Aseel Zeinati May 2023

Characterization Of Low Power Hfo2 Based Switching Devices For In-Memory Computing, Aseel Zeinati

Theses

Oxide based Resistive Random Access Memory (RRAM) devices are investigated as one of the promising non-volatile memories to be used for in-memory computing that will replace the classical von Neumann architecture and reduce the power consumption. These applications required multilevel cell (MLC) characteristics that can be achieved in RRAM devices. One of the methods to achieve this analog switching behavior is by performing an optimized electrical pulse. The RRAM device structure is basically an insulator between two metals as metal-insulator-metal (MIM) structure. Where one of the primary challenges is to assign an RRAM stack with both low power consumption and …


Using An Embedded System For A Quality Cup Of Coffee, Evan Powers, Joshua Stermer, Tsion Yohannes May 2023

Using An Embedded System For A Quality Cup Of Coffee, Evan Powers, Joshua Stermer, Tsion Yohannes

2023 Symposium

Many coffee lovers spend up to $5 on a cup of coffee everyday. To save money one could make them at home, but a quality machine with PIDs start at $1000. Using an embedded system one could spend less than $50 and a few hours implement PIDs into an existing $400 machine that will last a lifetime. microcontroller. Learning C language combined with hardware implementation applied to cheap and simple everyday objects can improve everyday quality of life and save money.

This is challenging because we have to incorporate the additional circuitry into a pre established circuit with limited space, …


Vi Energy-Efficient Memristor-Based Neuromorphic Computing Circuits And Systems For Radiation Detection Applications, Jorge Iván Canales Verdial May 2023

Vi Energy-Efficient Memristor-Based Neuromorphic Computing Circuits And Systems For Radiation Detection Applications, Jorge Iván Canales Verdial

Electrical and Computer Engineering ETDs

Radionuclide spectroscopic sensor data is analyzed with minimal power consumption through the use of neuromorphic computing architectures. Memristor crossbars are harnessed as the computational substrate in this non-conventional computing platform and integrated with CMOS-based neurons to mimic the computational dynamics observed in the mammalian brain’s visual cortex. Functional prototypes using spiking sparse locally competitive approximations are presented. The architectures are evaluated for classification accuracy and energy efficiency. The proposed systems achieve a 90% true positive accuracy with a high-resolution detector and 86% with a low-resolution detector.


The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels May 2023

The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels

Electronic Theses and Dissertations

The purpose of this study was to investigate and compare the corrosion mechanisms between wrought and additive-manufactured (3D-printed) copper and stainless steel. The experimental procedure consisted of measuring the open circuit potential, electrochemical impedance spectroscopy, linear sweep voltammetry, Tafel analysis, surface topology, and scanning electron microscopy for each metal within salt water, tap water, sulfuric acid, and synthetic body fluid (excluding copper in synthetic body fluid).

Overall, printed stainless steel was more corrosion-resistant than wrought stainless steel in tap water and synthetic body fluid based on OCP, LSV, and surface topology results. Additionally, printed copper was more corrosion-resistant than wrought …


Design And Implementation Of High-Efficiency, Lightweight, System-Friendly Solid-State Circuit Breaker, Dehao Qin May 2023

Design And Implementation Of High-Efficiency, Lightweight, System-Friendly Solid-State Circuit Breaker, Dehao Qin

All Dissertations

Direct current (DC) distribution system has shown potential over the alternative current (AC) distribution system in some application scenarios, e.g., electrified transportation, renewable energy, data center, etc. Because of the fast response speed, DC solid-state circuit breaker (SSCB) becomes a promising technology for the future power electronics intensive DC energy system with fault-tolerant capability. First, a thorough literature survey is performed to review the DC-SSCB technology. The key components for DC-SSCB, including power semiconductors, topologies, energy absorption units, and fault detection circuits, are studied. It is observed that the prior studies mainly focus on the basic interruption capability of the …


Stream Processor Development Using Multi-Threshold Null Convention Logic Asynchronous Design Methodology, Wassim Khalil May 2023

Stream Processor Development Using Multi-Threshold Null Convention Logic Asynchronous Design Methodology, Wassim Khalil

Graduate Theses and Dissertations

Decreasing transistor feature size has led to an increase in the number of transistors in integrated circuits (IC), allowing for the implementation of more complex logic. However, such logic also requires more complex clock tree synthesis (CTS) to avoid timing violations as the clock must reach many more gates over larger areas. Thus, timing analysis requires significantly more computing power and designer involvement than in the past. For these reasons, IC designers have been pushed to nix conventional synchronous (SYNC) architecture and explore novel methodologies such as asynchronous, self-timed architecture. This dissertation evaluates the nominal active energy, voltage-scaled active energy, …


A Low Power, Rad-Hard, Ecl Standard Cell Library, Zakaraya A. Hamdan May 2023

A Low Power, Rad-Hard, Ecl Standard Cell Library, Zakaraya A. Hamdan

Masters Theses

Space exploration for life both inside and outside of our solar system demand the design and fabrication of robust, reliable electronics that can take measurements, process data, and sustain necessary operations. However, the presence of high radiation and the cold temperature of space poses a challenge to most designers. This thesis presents the design of a radiation-hardened, cold capable emitter coupled logic standard cell library with the intention of being used for space applications. The cells are designed and fabricated in a 90nm silicon germanium BiCMOS process. First, a review of emitter coupled logic is presented. Then, the design methodology …


Evaluation Of The Dynamic Vision Sensor’S Photoreceptor Circuit For Infrared Event-Based Sensing, Zinah M. Alsaad Apr 2023

Evaluation Of The Dynamic Vision Sensor’S Photoreceptor Circuit For Infrared Event-Based Sensing, Zinah M. Alsaad

Electrical and Computer Engineering ETDs

For space surveillance applications, neuromorphic imaging is being studied as it may perform sensing and tracking tasks with less power and downstream datalink demand. The read-out of the event-based camera is made to only be sensitive to changes in the signals it receives from the photodetector, which results in a datastream of events indicating where and when changes in illumination occur. This is in contrast to the conventional framing camera, which produces images by essentially counting the electrons produced by light incident on each pixel’s photodetector. These cameras are commercially available with siliconbased detectors for applications involving visible wavelengths. However, …


Security Of Hardware Accelerators In Multi-Tenant Fpga Environments, Shayan Moini Feb 2023

Security Of Hardware Accelerators In Multi-Tenant Fpga Environments, Shayan Moini

Doctoral Dissertations

Field-programmable gate arrays (FPGAs) play an important role in the acceleration of computationally expensive algorithms for machine learning, aerospace, and ASIC prototyping. The emergence of FPGAs in the cloud (cloud FPGAs) has accelerated FPGA adoption in various applications due to their low initial cost and the ability to quickly prototype a design. Multi-tenancy, in which multiple users execute circuitry in the same FPGAs simultaneously with logical isolation, reduces cloud FPGA usage cost and increases FPGA utilization. Multi-tenancy introduces new security challenges, such as remote side-channel and fault injection attacks, that cannot be addressed with traditional countermeasures against attacks. In this …


Wireless Kick Pedal, Jacob Wise, Ryan Kinyo, Bradley Toth, Ian Zanath Jan 2023

Wireless Kick Pedal, Jacob Wise, Ryan Kinyo, Bradley Toth, Ian Zanath

Williams Honors College, Honors Research Projects

The goal of the project is to build a wireless kick pedal that allows accessibility to drummers that have leg or foot disabilities and add versatility to multi-instrumentalists looking to add percussion while playing another instrument. The proposed pedal is designed in two main parts, a wearable band that tracks the player’s movement, and a hammer mechanism that receives actuation commands from the wearable band to move the hammer and deliver a drumbeat. The band is designed to be worn on several parts of the body, including the ankle, knee, thigh, or even the arm depending on the user’s situation. …


Wireless Environmental Weather Monitor, Joel Christie-Millett, Nathan Schroeder, Sylvester Wilson, Matthew Szijarto Jan 2023

Wireless Environmental Weather Monitor, Joel Christie-Millett, Nathan Schroeder, Sylvester Wilson, Matthew Szijarto

Williams Honors College, Honors Research Projects

The goal of this senior design/honors project is to create a device that monitors environmental conditions in order to detect a wildfire. This device should notify a user of the status of the environment. The device should also last for 6 months without any human interaction. My role on the team is to design the power supply system that maximizes efficiency and uses renewable energy.


Low Power Multi-Channel Interface For Charge Based Tactile Sensors, Samuel Hansen Dec 2022

Low Power Multi-Channel Interface For Charge Based Tactile Sensors, Samuel Hansen

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Analog front end electronics are designed in 65 nm CMOS technology to process charge pulses arriving from a tactile sensor array. This is accomplished through the use of charge sensitive amplifiers and discrete time filters with tunable clock signals located in each of the analog front ends. Sensors were emulated using Gaussian pulses during simulation. The digital side of the system uses SAR (successive approximation register) ADCs for sampling of the processed sensor signals.

Adviser: Sina Balkır


Design And Analysis Of A Discrete, Pcb-Level Low-Power, Microwave Cross-Coupled Differential Lc Voltage-Controlled Oscillator, Pavin Singh Virdee Sep 2022

Design And Analysis Of A Discrete, Pcb-Level Low-Power, Microwave Cross-Coupled Differential Lc Voltage-Controlled Oscillator, Pavin Singh Virdee

Master's Theses

Radio Frequency (RF) and Microwave devices are typically implemented in Integrated Circuit (IC) form to minimize parasitics, increase precision and tolerances, and minimize size. Although IC fabrication for students and independent engineers is cost-prohibitive, an abundance of low-cost, easily accessible printed circuit board (PCB) and electronic component manufacturers allows affordable PCB fabrication.

While nearly all microwave voltage-controlled oscillator (VCO) designs are IC-based, this study presents a discrete PCB-level cross-coupled, differential LC VCO to demonstrate this more affordable and accessible approach. This thesis presents a 65 mW, discrete component VCO PCB with industry-comparable RF performance. A phase noise of -103.7 dBc/Hz …


Evaluation Of Single Phase Smart Pv Inverter Functions In Unbalanced Residential Distribution Systems, Darren Symonette Aug 2022

Evaluation Of Single Phase Smart Pv Inverter Functions In Unbalanced Residential Distribution Systems, Darren Symonette

Graduate Theses and Dissertations

In the United States, smart PV inverters integrated with residential distribution systems are becoming a more common occurrence. With integration of smart PV inverters, power utilities are experiencing an increase of number of operations with regards to switched capacitor banks, voltage regulators and on load tap changers. These increases can lead to excess wear and tear on the devices causing power utilities to perform unwanted replacement and maintenance. However, smart PV inverters when controlled under specific functions can enable these inverters to provide reactive power and voltage control which in turn lowers the number of operations for switched capacitor banks, …


Embedding A Grid Of Load Cells Into A Dining Table For Automatic Monitoring And Detection Of Eating Events, Mohammad Mayyan Aug 2022

Embedding A Grid Of Load Cells Into A Dining Table For Automatic Monitoring And Detection Of Eating Events, Mohammad Mayyan

All Dissertations

This dissertation describes a “smart dining table” that can detect and measure consumption events. This work is motivated by the growing problem of obesity, which is a global problem and an epidemic in the United States and Europe. Chapter 1 gives a background on the economic burden of obesity and its comorbidities. For the assessment of obesity, we briefly describe the classic dietary assessment tools and discuss their drawback and the necessity of using more objective, accurate, low-cost, and in-situ automatic dietary assessment tools. We explain in short various technologies used for automatic dietary assessment such as acoustic-, motion-, or …


Load Modeling And Evaluation Of Leds For Hardware Test Bed Application, Jillian M. Ruff Aug 2022

Load Modeling And Evaluation Of Leds For Hardware Test Bed Application, Jillian M. Ruff

Masters Theses

The lighting industry was revolutionized with the emergence of LED lighting. Over the last 15 years, LED lighting device sales and utilization have grown immensely. The growth and popularity of LEDs is due to improved operation of the device when compared to previous lighting technologies. Efficient performance of the device is critical due to the growth of global energy consumption.

As nonrenewable generation fuel is finite, utilities have begun the transition to renewable energy generation. Generation and distribution systems become inherently complex to comprehend and maintain with incorporation of emerging supply and load technologies. With the unprecedented growth of LED …


A Bulk Driven Transimpedance Cmos Amplifier For Sipm Based Detection, Shahram Hatefi Hesari Aug 2022

A Bulk Driven Transimpedance Cmos Amplifier For Sipm Based Detection, Shahram Hatefi Hesari

Masters Theses

The contribution of this work lies in the development of a bulk driven operational
transconducctance amplifier which can be integrated with other analog circuits and
photodetectors in the same chip for compactness, miniaturization and reducing the
power. Silicon photomultipliers, also known as SiPMs, when coupled with scintillator materials are used in many imaging applications including nuclear detection. This thesis discuss the design of a bulk-driven transimpedance amplifier suitable for detectors where the front end is a SiPM. The amplifier was design and fabricated in a standard standard CMOS process and is suitable for integration with CMOS based SiPMs and commercially …


Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi Jul 2022

Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi

LSU Doctoral Dissertations

Several reports state that it is crucial to analyze nanoscale semiconductor materials and devices with potential benefits to meet the need for next-generation nanoelectronics, bio, and nanosensors. The progress in the electronics field is as significant now, with modern technology constantly evolving and a greater focus on more efficient robust optoelectronic applications. This dissertation focuses on the study and examination of the practicality of Electrophoretic Deposition (EPD) of zinc oxide (ZnO) nanoparticles (NPs) for use in semiconductor applications.

The feasibility of several synthesized electrolytes, with and without surfactants and APTES surface functionalization, is discussed. The primary objective of this study …


Machine Learning Applications To Static Timing Analysis, Waseem Mohamed Raslan Jun 2022

Machine Learning Applications To Static Timing Analysis, Waseem Mohamed Raslan

Theses and Dissertations

Modeling complex cell behavior is critical for accurate static timing analysis. Effective current source model, ECSM, and composite current source, CCS, waveform data compression became a necessity to reduce the size of technology files and increase the accuracy of the cell characterization data. We used deep learning nonlinear Autoencoders to compress voltage and current waveforms and compared them with singular value decomposition, SVD, approach. Autoencoders gave ~1.67x compression ratio for voltage waveforms better than SVD approach and gave 45x to 55x better compression ratio compared to other lossless techniques like bz2 and gzip. Autoencoders achieved ~1.7x compression ratio for complex …


Modified Q-Learning Method For Automatic Voltage Regulation In Wide-Area Multigeneration Systems, Brook Abegaz, Sina Zarrabian Jun 2022

Modified Q-Learning Method For Automatic Voltage Regulation In Wide-Area Multigeneration Systems, Brook Abegaz, Sina Zarrabian

Engineering Science Faculty Publications

The state-estimation and optimal control of multigeneration systems are challenging for wide-area systems having numerous distributed automatic voltage regulators (AVR). This paper proposes a modified Q-learning method and algorithm that aim to improve the convergence of the approach and enhance the dynamic response and stability of the terminal voltage of multiple generators in the experimental Western System Coordinating Council (WSCC) and large-scale IEEE 39-bus test systems. The large-scale experimental testbed consists of a six-area, 39-bus system having ten generators that are connected to ten AVRs. The implementation shows promising results in providing stable terminal voltage profiles and other system parameters …


Mars Prototype Rover Environmental Measurement System, James A. Renick Jun 2022

Mars Prototype Rover Environmental Measurement System, James A. Renick

Computer Engineering

In my senior project, the problem I am trying to solve is how to efficiently design, create, and install an original library onto a Mars prototype rover operating system and to further use that library to integrate a new weather measurement sensor device into the rover system with the necessary software and hardware implementations. This is an important and highly valued problem as many aerospace and other engineering companies utilize rovers and other autonomous systems for important research, explorations, and reconnaissance missions and goals. In solving this problem, I utilized many resources that were available to me such as advisors, …


Smartphone Control Of Rc Cars, Weston R. Fitzgerald Jun 2022

Smartphone Control Of Rc Cars, Weston R. Fitzgerald

Electrical Engineering

The smartphone-controlled RC (remote-controlled) car is an inexpensive remote-controlled car designed to be fast and portable. Instead of manufacturing, packaging, and shipping a separate controller, the remote control is implemented in a phone application, which saves time and money in both the design process and the manufacturing process. Utilizing the user’s smartphone is more cost-effective since mobile devices are a common recurrence, and packaging fewer devices results in overall better portability of the product.

This smartphone-controlled car is speedy and intuitive to learn for typical smartphone users. The user can change the car’s speed and direction wirelessly using their phone; …


Integrated Circuits Parasitic Capacitance Extraction Using Machine Learning And Its Application To Layout Optimization, Mohamed Saleh Abouelyazid Saleh May 2022

Integrated Circuits Parasitic Capacitance Extraction Using Machine Learning And Its Application To Layout Optimization, Mohamed Saleh Abouelyazid Saleh

Theses and Dissertations

The impact of parasitic elements on the overall circuit performance keeps increasing from one technology generation to the next. In advanced process nodes, the parasitic effects dominate the overall circuit performance. As a result, the accuracy requirements of parasitic extraction processes significantly increased, especially for parasitic capacitance extraction. Existing parasitic capacitance extraction tools face many challenges to cope with such new accuracy requirements that are set by semiconductor foundries (< 5% error). Although field-solver methods can meet such requirements, they are very slow and have a limited capacity. The other alternative is the rule-based parasitic capacitance extraction methods, which are faster and have a high capacity; however, they cannot consistently provide good accuracy as they use a pre-characterized library of capacitance formulas that cover a limited number of layout patterns. On the other hand, the new parasitic extraction accuracy requirements also added more challenges on existing parasitic-aware routing optimization methods, where simplified parasitic models are used to optimize layouts.

This dissertation provides new solutions for interconnect parasitic capacitance extraction and parasitic-aware routing optimization methodologies in order to cope with the new accuracy requirements of advanced process nodes as follows. …


A Ringamp-Assisted, Output Capacitor-Less Analog Cmos Low-Dropout Voltage Regulator, Jordan Sangid May 2022

A Ringamp-Assisted, Output Capacitor-Less Analog Cmos Low-Dropout Voltage Regulator, Jordan Sangid

Doctoral Dissertations

Continued advancements in state-of-the-art integrated circuits have furthered trends toward higher computational performance and increased functionality within smaller circuit area footprints, all while improving power efficiencies to meet the demands of mobile and battery-powered applications. A significant portion of these advancements have been enabled by continued scaling of CMOS technology into smaller process node sizes, facilitating faster digital systems and power optimized computation. However, this scaling has degraded classic analog amplifying circuit structures with reduced voltage headroom and lower device output resistance; and thus, lower available intrinsic gain. This work investigates these trends and their impact for fine-grain Low-Dropout (LDO) …


Design Of A Bandgap Voltage Reference, Nicolaus Vail May 2022

Design Of A Bandgap Voltage Reference, Nicolaus Vail

Electrical Engineering Undergraduate Honors Theses

This thesis details the design process of a bandgap voltage reference (BGR) integrated circuit in a 180 nm CMOS process. A BGR provides a constant DC voltage across a range of operating temperatures and supply voltages. By its nature, the circuit is intended as a reference, not to provide current, so the output would be connected to a very high impedance, such as the gate of a transistor. At 27°C, this design provides a 955 mV reference voltage given a nominal VDD of 3 V. From 20°C to 175°C, the output voltage has a variance of 7.2 mV (approximately 0.8%) …


Photoassisted Nanoscale Memory Resistors, Amir Shariffar May 2022

Photoassisted Nanoscale Memory Resistors, Amir Shariffar

Graduate Theses and Dissertations

Memristors or memory resistors are promising two-terminal devices, which have the potential to revolutionize current electronic memory technologies. Memristors have been extensively investigated and reported to be practical devices, although they still suffer from poor stability, low retention time, and laborious fabrication processes.

The primary aim of this project was to achieve a device structure of quantum dots or thin films to address a fundamental challenge of unstable resistive switching behavior in memristors. Moreover, we aimed to investigate the effects of light illumination in terms of intensity and wavelength on the performance of the fabricated memristor. The parameters such as …