Open Access. Powered by Scholars. Published by Universities.®

Electrical and Electronics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Electrical and Electronics

Low-Power, Event-Driven System On A Chip For Charge Pulse Processing Applications, Joseph A. Schmitz Dec 2023

Low-Power, Event-Driven System On A Chip For Charge Pulse Processing Applications, Joseph A. Schmitz

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

This dissertation presents an electronic architecture and methodology capable of processing charge pulses generated by a range of sensors, including radiation detectors and tactile synthetic skin. These sensors output a charge signal proportional to the input stimulus, which is processed electronically in both the analog and digital domains. The presented work implements this functionality using an event-driven methodology, which greatly reduces power consumption compared to standard implementations. This enables new application areas that require a long operating time or compact physical dimensions, which would not otherwise be possible. The architecture is designed, fabricated, and tested in the aforementioned applications to …


A Case Study In Cmos Design Scaling For Analog Applications: The Ringamp Ldo, Steven Corum Dec 2023

A Case Study In Cmos Design Scaling For Analog Applications: The Ringamp Ldo, Steven Corum

Masters Theses

As CMOS process nodes scale to smaller feature sizes, process optimizations are made to achieve improvements in digital circuit performance, such as increasing speed and memory, while decreasing power consumption. Unfortunately for analog design, these optimizations usually come at the expense of poorer transistor performance, such as reduced small signal output resistance and increased channel length modulation. The ring amplifier has been proposed as a digital solution to the analog scaling problem, by configuring digital inverters to function as analog amplifiers through deadzone biasing. As digital inverters naturally scale, the ring amplifier is a promising area of exploration for analog …


A Portable, Low Power Radiation Detection And Identification System For High Count Rate, Long Term Monitoring, Samuel J. Murray Aug 2023

A Portable, Low Power Radiation Detection And Identification System For High Count Rate, Long Term Monitoring, Samuel J. Murray

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

This dissertation presents the design of a novel radiation detection and identification system that can operate continuously over a period of 8 days while detecting at 30,000 counts per second, consuming a total of 11 mW. The entire system is highly integrated, containing a gamma ray detector, a high voltage detector power supply, and a multichannel analyzer (MCA) system-on-a-chip (SoC), which are all combined into a compact form using a multi-level, configurable printed circuit board design. The MCA SoC, fabricated using a 65 nm CMOS technology, features two enabling resources to allow low power detections at high count rates for …


Characterization Of Low Power Hfo2 Based Switching Devices For In-Memory Computing, Aseel Zeinati May 2023

Characterization Of Low Power Hfo2 Based Switching Devices For In-Memory Computing, Aseel Zeinati

Theses

Oxide based Resistive Random Access Memory (RRAM) devices are investigated as one of the promising non-volatile memories to be used for in-memory computing that will replace the classical von Neumann architecture and reduce the power consumption. These applications required multilevel cell (MLC) characteristics that can be achieved in RRAM devices. One of the methods to achieve this analog switching behavior is by performing an optimized electrical pulse. The RRAM device structure is basically an insulator between two metals as metal-insulator-metal (MIM) structure. Where one of the primary challenges is to assign an RRAM stack with both low power consumption and …


Using An Embedded System For A Quality Cup Of Coffee, Evan Powers, Joshua Stermer, Tsion Yohannes May 2023

Using An Embedded System For A Quality Cup Of Coffee, Evan Powers, Joshua Stermer, Tsion Yohannes

2023 Symposium

Many coffee lovers spend up to $5 on a cup of coffee everyday. To save money one could make them at home, but a quality machine with PIDs start at $1000. Using an embedded system one could spend less than $50 and a few hours implement PIDs into an existing $400 machine that will last a lifetime. microcontroller. Learning C language combined with hardware implementation applied to cheap and simple everyday objects can improve everyday quality of life and save money.

This is challenging because we have to incorporate the additional circuitry into a pre established circuit with limited space, …


Vi Energy-Efficient Memristor-Based Neuromorphic Computing Circuits And Systems For Radiation Detection Applications, Jorge Iván Canales Verdial May 2023

Vi Energy-Efficient Memristor-Based Neuromorphic Computing Circuits And Systems For Radiation Detection Applications, Jorge Iván Canales Verdial

Electrical and Computer Engineering ETDs

Radionuclide spectroscopic sensor data is analyzed with minimal power consumption through the use of neuromorphic computing architectures. Memristor crossbars are harnessed as the computational substrate in this non-conventional computing platform and integrated with CMOS-based neurons to mimic the computational dynamics observed in the mammalian brain’s visual cortex. Functional prototypes using spiking sparse locally competitive approximations are presented. The architectures are evaluated for classification accuracy and energy efficiency. The proposed systems achieve a 90% true positive accuracy with a high-resolution detector and 86% with a low-resolution detector.


Design And Implementation Of High-Efficiency, Lightweight, System-Friendly Solid-State Circuit Breaker, Dehao Qin May 2023

Design And Implementation Of High-Efficiency, Lightweight, System-Friendly Solid-State Circuit Breaker, Dehao Qin

All Dissertations

Direct current (DC) distribution system has shown potential over the alternative current (AC) distribution system in some application scenarios, e.g., electrified transportation, renewable energy, data center, etc. Because of the fast response speed, DC solid-state circuit breaker (SSCB) becomes a promising technology for the future power electronics intensive DC energy system with fault-tolerant capability. First, a thorough literature survey is performed to review the DC-SSCB technology. The key components for DC-SSCB, including power semiconductors, topologies, energy absorption units, and fault detection circuits, are studied. It is observed that the prior studies mainly focus on the basic interruption capability of the …


Stream Processor Development Using Multi-Threshold Null Convention Logic Asynchronous Design Methodology, Wassim Khalil May 2023

Stream Processor Development Using Multi-Threshold Null Convention Logic Asynchronous Design Methodology, Wassim Khalil

Graduate Theses and Dissertations

Decreasing transistor feature size has led to an increase in the number of transistors in integrated circuits (IC), allowing for the implementation of more complex logic. However, such logic also requires more complex clock tree synthesis (CTS) to avoid timing violations as the clock must reach many more gates over larger areas. Thus, timing analysis requires significantly more computing power and designer involvement than in the past. For these reasons, IC designers have been pushed to nix conventional synchronous (SYNC) architecture and explore novel methodologies such as asynchronous, self-timed architecture. This dissertation evaluates the nominal active energy, voltage-scaled active energy, …


The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels May 2023

The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels

Electronic Theses and Dissertations

The purpose of this study was to investigate and compare the corrosion mechanisms between wrought and additive-manufactured (3D-printed) copper and stainless steel. The experimental procedure consisted of measuring the open circuit potential, electrochemical impedance spectroscopy, linear sweep voltammetry, Tafel analysis, surface topology, and scanning electron microscopy for each metal within salt water, tap water, sulfuric acid, and synthetic body fluid (excluding copper in synthetic body fluid).

Overall, printed stainless steel was more corrosion-resistant than wrought stainless steel in tap water and synthetic body fluid based on OCP, LSV, and surface topology results. Additionally, printed copper was more corrosion-resistant than wrought …


A Low Power, Rad-Hard, Ecl Standard Cell Library, Zakaraya A. Hamdan May 2023

A Low Power, Rad-Hard, Ecl Standard Cell Library, Zakaraya A. Hamdan

Masters Theses

Space exploration for life both inside and outside of our solar system demand the design and fabrication of robust, reliable electronics that can take measurements, process data, and sustain necessary operations. However, the presence of high radiation and the cold temperature of space poses a challenge to most designers. This thesis presents the design of a radiation-hardened, cold capable emitter coupled logic standard cell library with the intention of being used for space applications. The cells are designed and fabricated in a 90nm silicon germanium BiCMOS process. First, a review of emitter coupled logic is presented. Then, the design methodology …


Evaluation Of The Dynamic Vision Sensor’S Photoreceptor Circuit For Infrared Event-Based Sensing, Zinah M. Alsaad Apr 2023

Evaluation Of The Dynamic Vision Sensor’S Photoreceptor Circuit For Infrared Event-Based Sensing, Zinah M. Alsaad

Electrical and Computer Engineering ETDs

For space surveillance applications, neuromorphic imaging is being studied as it may perform sensing and tracking tasks with less power and downstream datalink demand. The read-out of the event-based camera is made to only be sensitive to changes in the signals it receives from the photodetector, which results in a datastream of events indicating where and when changes in illumination occur. This is in contrast to the conventional framing camera, which produces images by essentially counting the electrons produced by light incident on each pixel’s photodetector. These cameras are commercially available with siliconbased detectors for applications involving visible wavelengths. However, …


Security Of Hardware Accelerators In Multi-Tenant Fpga Environments, Shayan Moini Feb 2023

Security Of Hardware Accelerators In Multi-Tenant Fpga Environments, Shayan Moini

Doctoral Dissertations

Field-programmable gate arrays (FPGAs) play an important role in the acceleration of computationally expensive algorithms for machine learning, aerospace, and ASIC prototyping. The emergence of FPGAs in the cloud (cloud FPGAs) has accelerated FPGA adoption in various applications due to their low initial cost and the ability to quickly prototype a design. Multi-tenancy, in which multiple users execute circuitry in the same FPGAs simultaneously with logical isolation, reduces cloud FPGA usage cost and increases FPGA utilization. Multi-tenancy introduces new security challenges, such as remote side-channel and fault injection attacks, that cannot be addressed with traditional countermeasures against attacks. In this …


Wireless Kick Pedal, Jacob Wise, Ryan Kinyo, Bradley Toth, Ian Zanath Jan 2023

Wireless Kick Pedal, Jacob Wise, Ryan Kinyo, Bradley Toth, Ian Zanath

Williams Honors College, Honors Research Projects

The goal of the project is to build a wireless kick pedal that allows accessibility to drummers that have leg or foot disabilities and add versatility to multi-instrumentalists looking to add percussion while playing another instrument. The proposed pedal is designed in two main parts, a wearable band that tracks the player’s movement, and a hammer mechanism that receives actuation commands from the wearable band to move the hammer and deliver a drumbeat. The band is designed to be worn on several parts of the body, including the ankle, knee, thigh, or even the arm depending on the user’s situation. …


Wireless Environmental Weather Monitor, Joel Christie-Millett, Nathan Schroeder, Sylvester Wilson, Matthew Szijarto Jan 2023

Wireless Environmental Weather Monitor, Joel Christie-Millett, Nathan Schroeder, Sylvester Wilson, Matthew Szijarto

Williams Honors College, Honors Research Projects

The goal of this senior design/honors project is to create a device that monitors environmental conditions in order to detect a wildfire. This device should notify a user of the status of the environment. The device should also last for 6 months without any human interaction. My role on the team is to design the power supply system that maximizes efficiency and uses renewable energy.