Open Access. Powered by Scholars. Published by Universities.®

Electrical and Electronics Commons

Open Access. Powered by Scholars. Published by Universities.®

VLSI and Circuits, Embedded and Hardware Systems

2020

Institution
Keyword
Publication
Publication Type

Articles 1 - 15 of 15

Full-Text Articles in Electrical and Electronics

Efficient Hardware Architectures For Public-Key Cryptosystems, Mohammadamin Saburruhmonfared Dec 2020

Efficient Hardware Architectures For Public-Key Cryptosystems, Mohammadamin Saburruhmonfared

Electronic Thesis and Dissertation Repository

Finite field arithmetic plays an essential role in public-key cryptography as all the underlying operations are performed in these fields. The finite fields are either prime fields or binary fields. Binary field elements can mainly be represented on a polynomial basis or a normal basis (NB). NB representation offers a simple squaring operation, especially in hardware. However, multiplication is typically complex, and a particular subset of NB called Gaussian Normal Basis (GNB) features an efficient multiplication operation used in this work. The first part of this thesis has focused on improving finite field arithmetic architectures over GNB. Among different arithmetic …


Longitudinal Partitioning Waveform Relaxation Methods For The Analysis Of Transmission Line Circuits, Tarik Menkad Dec 2020

Longitudinal Partitioning Waveform Relaxation Methods For The Analysis Of Transmission Line Circuits, Tarik Menkad

Electronic Thesis and Dissertation Repository

Three research projects are presented in this manuscript. Projects one and two describe two waveform relaxation algorithms (WR) with longitudinal partitioning for the time-domain analysis of transmission line circuits. Project three presents theoretical results about the convergence of WR for chains of general circuits.

The first WR algorithm uses a assignment-partition procedure that relies on inserting external series combinations of positive and negative resistances into the circuit to control the speed of convergence of the algorithm. The convergence of the subsequent WR method is examined, and fast convergence is cast as a generic optimization problem in the frequency-domain. An automatic …


Design And Implementation Of An Isfet Sensor With Integration Of An On-Chip Processor, Shaghayegh Aslanzadeh Dec 2020

Design And Implementation Of An Isfet Sensor With Integration Of An On-Chip Processor, Shaghayegh Aslanzadeh

Doctoral Dissertations

Portable sensors are used in many applications. Among them, pH sensors are suitable for quantifying and identifying various analytes in real-time and doing so non-invasively. The analytes may have environmental impact such as in water quality monitoring. The analytes may also have biological impact such as monitoring cell culture or remote patient health assessment. CMOS based sensors are compact and enable low power consumption suitable for these portable applications.

This work reports on the development of a portable CMOS based pH sensor. The contributions of this dissertation are as follows. First, a differential pH sensor, with two different sized electrodes …


Fractional Order Identification Method And Control: Development Of Control For Non-Minimum Phase Fractional Order System, Majid Abdullah Alhomim Dec 2020

Fractional Order Identification Method And Control: Development Of Control For Non-Minimum Phase Fractional Order System, Majid Abdullah Alhomim

Graduate Theses and Dissertations

The increasing use of renewable energy has resulted in the need for improved a dc-dc converters. This type of electronic-based equipment is needed to interface the dc voltages normally encountered with solar arrays and battery systems to voltage levels suitable for connecting three phase inverters to distribution level networks. As grid-connected solar power levels continue to increase, there is a corresponding need for improved modeling and control of power electronic converters. In particular, higher levels of boost ratios are needed to connect low voltage circuits (less than 1000 V) to medium voltage levels in the range of 13 kV to …


A Note From The Editor, Daphne Fauber Nov 2020

A Note From The Editor, Daphne Fauber

Ideas: Exhibit Catalog for the Honors College Visiting Scholars Series

This piece is a letter from Daphne Fauber, the editor of this issue of Ideas. In the letter, the editor introduces the work of Dr. Paschalis Gkoupidenis as well as the moment in time in which his Visiting Scholars talk occurs.


Digital And Mixed Domain Hardware Reduction Algorithms And Implementations For Massive Mimo, Najath A. Mohomed Nov 2020

Digital And Mixed Domain Hardware Reduction Algorithms And Implementations For Massive Mimo, Najath A. Mohomed

FIU Electronic Theses and Dissertations

Emerging 5G and 6G based wireless communications systems largely rely on multiple-input-multiple-output (MIMO) systems to reduce inherently extensive path losses, facilitate high data rates, and high spatial diversity. Massive MIMO systems used in mmWave and sub-THz applications consists of hundreds perhaps thousands of antenna elements at base stations. Digital beamforming techniques provide the highest flexibility and better degrees of freedom for phased antenna arrays as compared to its analog and hybrid alternatives but has the highest hardware complexity.

Conventional digital beamformers at the receiver require a dedicated analog to digital converter (ADC) for every antenna element, leading to ADCs for …


A 2.56 Gbps Serial Wireline Transceiver That Supports An Auxiliary Channel And A Hybrid Line Driver To Compensate Large Channel Loss, Xiaoran Wang Aug 2020

A 2.56 Gbps Serial Wireline Transceiver That Supports An Auxiliary Channel And A Hybrid Line Driver To Compensate Large Channel Loss, Xiaoran Wang

Electrical Engineering Theses and Dissertations

Serial transceiver links are widely used for high-speed point-to-point communications. This dissertation describes two transceiver link designs for two different applications.

In serial wireline communications, security is an increasingly important factor to concern. Securing an information processing system at the application and system software layers is regarded as a necessary but incomplete defense against the cyber security threats. In this dissertation, an asynchronous serial transceiver that is capable of transmitting and receiving an auxiliary data stream concurrently with the primary data stream is described. The transceiver instantiates the auxiliary data stream by modulating the phase of the primary data without …


Polyone Smartphone, Joshua Zalmanowitz, Chi Nguyen, Gerome Cacho, Chris Lim Jun 2020

Polyone Smartphone, Joshua Zalmanowitz, Chi Nguyen, Gerome Cacho, Chris Lim

Electrical Engineering

The Poly One Smartphone is a student designed smartphone built to explore the implementation of 5G, provide a hardware solution to ensure personal information security and privacy, and provide longer battery life. The key features of this smartphone include but are not limited to a main cpu, some form of network connectivity in the form of Wi-fi or Cellular Data, calling functionality, a rechargeable battery that works with common power connection protocols, and compatibility with popular applications.


Investigations Of New Fault-Tolerant Methods For Multilevel Inverters, Haider Mhiesan May 2020

Investigations Of New Fault-Tolerant Methods For Multilevel Inverters, Haider Mhiesan

Graduate Theses and Dissertations

The demands of power electronics with high power capability have increased in the last decades. These needs have driven the expansion of existing power electronics topologies and developing new power electronics generations. Multilevel inverters (MLI) are one of the most promising power electronics circuits that have been implemented and commercialized in high-voltage direct current (HVDC), motor drives, and battery energy storage systems (BESS). The expanding uses of the MLI have lead to creation of new topologies for different applications. However, one of the disadvantages of using MLIs is their complexity. MLIs consist of a large number of switching devices, which …


Resource Efficient Design Of Quantum Circuits For Cryptanalysis And Scientific Computing Applications, Edgard Munoz-Coreas Jan 2020

Resource Efficient Design Of Quantum Circuits For Cryptanalysis And Scientific Computing Applications, Edgard Munoz-Coreas

Theses and Dissertations--Electrical and Computer Engineering

Quantum computers offer the potential to extend our abilities to tackle computational problems in fields such as number theory, encryption, search and scientific computation. Up to a superpolynomial speedup has been reported for quantum algorithms in these areas. Motivated by the promise of faster computations, the development of quantum machines has caught the attention of both academics and industry researchers. Quantum machines are now at sizes where implementations of quantum algorithms or their components are now becoming possible. In order to implement quantum algorithms on quantum machines, resource efficient circuits and functional blocks must be designed. In this work, we …


Sensor Fusion And Non-Linear Mpc Controller Development Studies For Intelligent Autonomous Vehicular Systems, Ahammad Basha Dudekula Jan 2020

Sensor Fusion And Non-Linear Mpc Controller Development Studies For Intelligent Autonomous Vehicular Systems, Ahammad Basha Dudekula

Dissertations, Master's Theses and Master's Reports

The demand for safety and fuel efficiency on ground vehicles and advancement in embedded systems created the opportunity to develop Autonomous controller. The present thesis work is three fold and it encompasses all elements that are required to prototype the autonomous intelligent system including simulation, state handling and real time implementation. The Autonomous vehicle operation is mainly dependent upon accurate state estimation and thus a major concern of implementing the autonomous navigation is obtaining robust and accurate data from sensors. This is especially true, in case of Inertial Measurement Unit (IMU) sensor data. The IMU consists of a 3-axis gyro, …


Zips Racing Electric Can Communications, Andrew Jordan, Adam Long, Susanah Kowalewski, Rami Nehme Jan 2020

Zips Racing Electric Can Communications, Andrew Jordan, Adam Long, Susanah Kowalewski, Rami Nehme

Williams Honors College, Honors Research Projects

The CAN protocol has been a standard of electronic communication networks of automotive vehicles since the early 2000s due to its robust reliability in harsh environments. For the 2020 competition year, the Zips Racing Electric design team will be building an entirely new, fully-electric vehicle with CAN communication implemented rather than communicating via pure analog signals. Hardware and software can be utilized to read analog electrical signals from a source, such as accelerator and brake sensors, and encode them into a digital message that meets the CAN 2.0B communication protocol standard. Likewise, software can be used to extract data from …


Smart Collar, Gretchen T. Woodling, Sean Moran, Justen Bischoff, Jacob Sindelar Jan 2020

Smart Collar, Gretchen T. Woodling, Sean Moran, Justen Bischoff, Jacob Sindelar

Williams Honors College, Honors Research Projects

The Smart Collar is a universal pet tracker, designed to be small and exceedingly comfortable for any pet to wear. GPS technology is used to locate the device, allowing the user to track their pet, via a smart phone application. This application can be used to program the device, view maps of their pet’s location and history of travel. Operating primarily on Long Range Wide Area Network (LoRaWAN) for data transfer, the device consumes very little power, allowing for several days of run-time per charge of the battery. Boasting no monthly service fees, The Smart Collar provides pet owner’s an …


Kettlebell Ultra, Elissa Peters, Kathryn Wegman, Daniel Basch, Mason Pastorius Jan 2020

Kettlebell Ultra, Elissa Peters, Kathryn Wegman, Daniel Basch, Mason Pastorius

Williams Honors College, Honors Research Projects

This project will consist of an attachment to an average kettlebell that will track the number of repetitions that the user has performed. The device will send this data over Bluetooth to a smart phone application so the user can track their workout accurately.


Digital, Automated Reactive Target System, Nicholas Haas, Saipranay Vellala, Trandon Ware, Thomas Martin Jan 2020

Digital, Automated Reactive Target System, Nicholas Haas, Saipranay Vellala, Trandon Ware, Thomas Martin

Williams Honors College, Honors Research Projects

In this era, technology is woven into almost every facet of our leisure activities. Although technology has innovated hobbies ranging from chess to soccer, the art of shooting has been neglected. Unnecessary insufficiency such as bullet ricochets off of mechanical steel targets, ineffective progress tracking, and general inaccessibility to outdoor training facilities are all improvable areas of this sport. The Dynamic Automated Reactive Target (D.A.R.T) System aims to fill some of these gaps and help modernize recreational marksmanship. Modeling the system after a dueling tree will optimize the use of the system and allow for different training models to challenge …