Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 25146

Full-Text Articles in Electrical and Computer Engineering

Synthesizing Adversarial Examples For Neural Networks, Hasitha Rasineni Jan 2109

Synthesizing Adversarial Examples For Neural Networks, Hasitha Rasineni

Creative Components

As machine learning is being integrated into more and more systems, such as autonomous vehicles or medical devices, they are also becoming entry points for attacks. Many sate-of-the-art neural networks have been proved, to be vulnerable to adversarial examples. These failures of machine learning models demonstrate that even simple algorithms can behave very differently from what their designers intend to. In order to close this gap between what designers intend to and how algorithms behave, there is a huge need for preventing adversarial examples to improve the credibility of the model. This study focuses on synthesizing adversarial examples using two ...


Indoor Source Localization Of Radio Frequency Transmitters Using Blind Channel Identification Techniques, Madison L. Rose Aug 2020

Indoor Source Localization Of Radio Frequency Transmitters Using Blind Channel Identification Techniques, Madison L. Rose

All Graduate Theses and Dissertations

Locating transmitters is a research area that is becoming increasingly relevant as technology advances. It is especially useful for determining the location of livestock, drones, keys, phones, tablets, etc. As a result of this push for locating devices, many algorithms have been developed to determine source locations. Most source location algorithms and techniques rely on a “line of sight”, or a direct path between the source and the receivers to provide accurate results.

Indoor environments pose a challenge to locating transmitters due to the many surfaces that allow radio waves to interact (reflect, refract, and generally distort) with them. Because ...


Investigating Single Precision Floating General Matrix Multiply In Heterogeneous, Steven Harris Aug 2020

Investigating Single Precision Floating General Matrix Multiply In Heterogeneous, Steven Harris

Engineering and Applied Science Theses & Dissertations

The fundamental operation of matrix multiplication is ubiquitous across a myriad of disciplines. Yet, the identification of new optimizations for matrix multiplication remains relevant for emerging hardware architectures and heterogeneous systems. Frameworks such as OpenCL enable computation orchestration on existing systems, and its availability using the Intel High Level Synthesis compiler allows users to architect new designs for reconfigurable hardware using C/C++. Using the HARPv2 as a vehicle for exploration, we investigate the utility of several of the most notable matrix multiplication optimizations to better understand the performance portability of OpenCL and the implications for such optimizations on this ...


Formation Control Using Vehicle Operational Envelopes And Behavior-Based Dual-Mode Model Predictive Control, Brian Merrell Aug 2020

Formation Control Using Vehicle Operational Envelopes And Behavior-Based Dual-Mode Model Predictive Control, Brian Merrell

All Graduate Theses and Dissertations

This thesis presents a control framework for formation control. Given an initial desired trajectory, a framework is presented to generate trajectories for each vehicle within the formation. When combined with an operational envelope, a designated area for each vehicle to maneuver, for each vehicle the multi-vehicle formation control problem can be redefined into a single vehicle problem. A single vehicle framework is presented to track the respective trajectory when possible, or stay near it when it passes through previously unknown obstacles. Arc-based motions are used to rapidly produce desirable robot controls while a trajectory tracking motion is used to ensure ...


Relay Selection Strategies For Multi-Hop Cooperative Networks, Hui Sun Jun 2020

Relay Selection Strategies For Multi-Hop Cooperative Networks, Hui Sun

LSU Doctoral Dissertations

In this dissertation we consider several relay selection strategies for multi-hop cooperative networks. The relay selection strategies we propose do not require a central controller (CC). Instead, the relay selection is on a hop-by-hop basis. As such, these strategies can be implemented in a distributed manner. Therefore, increasing the number of hops in the network would not increase the complexity or time consumed for the relay selection procedure of each hop. We first investigate the performance of a hop-by-hop relay selection strategy for multi-hop decode-and-forward (DF) cooperative networks. In each relay cluster, relays that successfully receive and decode the message ...


Backing Up Into Advocacy: The Case Of Smartphone Driver Distraction, Robert Rosenberger May 2020

Backing Up Into Advocacy: The Case Of Smartphone Driver Distraction, Robert Rosenberger

The Journal of Sociotechnical Critique

For the last decade, I’ve been studying the topic of the driving impairment of smartphones. While this began as an exclusively academic project, it has increasingly compelled public engagement. One example of this came in an opinion piece I wrote in 2018 in response to a new traffic law. I take the opportunity here to fill out the academic backstory of this particular op-ed, reflect on how this larger project has evolved to include an unanticipated public-facing edge, and abstract some lessons about public writing.


A Statistical Impulse Response Model Based On Empirical Characterization Of Wireless Underground Channel, Abdul Salam, Mehmet C. Vuran, Suat Irmak May 2020

A Statistical Impulse Response Model Based On Empirical Characterization Of Wireless Underground Channel, Abdul Salam, Mehmet C. Vuran, Suat Irmak

Faculty Publications

Wireless underground sensor networks (WUSNs) are becoming ubiquitous in many areas. The design of robust systems requires extensive understanding of the underground (UG) channel characteristics. In this paper, an UG channel impulse response is modeled and validated via extensive experiments in indoor and field testbed settings. The three distinct types of soils are selected with sand and clay contents ranging from $13\%$ to $86\%$ and $3\%$ to $32\%$, respectively. The impacts of changes in soil texture and soil moisture are investigated with more than $1,200$ measurements in a novel UG testbed that allows flexibility in soil moisture control. Moreover ...


Formal Framework For Safety, Security, And Availability Of Aircraft Communication Networks, Rohit Dureja, Kristin Yvonne Rozier May 2020

Formal Framework For Safety, Security, And Availability Of Aircraft Communication Networks, Rohit Dureja, Kristin Yvonne Rozier

Aerospace Engineering Publications

As the costs of fuel and maintenance increase and regulations on weight and environmental impact tighten, there is an increasing push to transition onboard aircraft networks to wireless, reducing weight, fuel, maintenance time, and pollution. A candidate short-range wireless network for aircraft onboard communications is outlined using the common ZigBee protocol and privacy-preserving search implemented as a secure publish/subscribe system using specially coded metadata. Formally specifying safety and security properties and modeling the network in New e(X)tensible Model Verifier enable verification and fault analysis via model checking and lay the groundwork for future certification avenues. Experiments formally ...


Rapid Restoration Techniques For Software-Defined Networks, Ali Malik, Ruairí De Fréin, Benjamin Aziz May 2020

Rapid Restoration Techniques For Software-Defined Networks, Ali Malik, Ruairí De Fréin, Benjamin Aziz

Articles

There is increasing demand in modern day business applications for communication networks to be robust and reliable due to the complexity and critical nature of such applications. As such, data delivery is expected to be reliable and secure even in the harshest of environments. Software-Defined Networking (SDN) is gaining traction as a promising approach for designing network architectures which are robust and flexible. One reason for this is that separating the data plane from the control plane, increases the controller’s ability to configure the network rapidly. When network failure events occur, the network manager may trade-off the optimality of ...


Heel Down And Toe-Off Time Measured With Ultrasonic Doppler System And Force Plate Sensor, Sabin Timsina May 2020

Heel Down And Toe-Off Time Measured With Ultrasonic Doppler System And Force Plate Sensor, Sabin Timsina

Honors Theses

Collie Box is a medical device that measures the gait parameters of the person walk- ing in front of it. This device uses the Ultrasonic Doppler system to extract the heel-contact and toe-off times of a person walking within the range of 2-10 meters. These times are used to determine the leg’s swing phase and double stance times. The ultrasonic transducer of 10mm diameter is driven at 40kHz. At the time of the heel-contact and toe-off, foot velocity is zero while the torso part of the human body is still in motion. The wide directivity of 10mm diameter ultrasonic ...


Miniaturized-Element Frequency-Selective Rasorber Design Using Characteristic Modes Analysis, Qingxin Guo, Jianxun Su, Zengrui Li, Jiming Song, Yalin Guan May 2020

Miniaturized-Element Frequency-Selective Rasorber Design Using Characteristic Modes Analysis, Qingxin Guo, Jianxun Su, Zengrui Li, Jiming Song, Yalin Guan

Electrical and Computer Engineering Publications

A dual-polarization frequency-selective rasorber with two absorptive bands at both sides of a passband is presented. Based on the characteristic mode analysis, a circuit analog absorber is designed using a lossy FSS that consists of miniaturized meander lines and lumped resistors. The positions and values of resistors are determined according to the analysis of modal significances and modal current. After that, the presented rasorber is designed by cascading of the lossy FSS and a lossless bandpass FSS. Equivalent circuits of the frequency-selective rasorber are modelled, and surface current distributions of both FSSs are illustrated to explain the operation mechanism. Measurement ...


Zenneck Waves In Decision Agriculture: An Empirical Verification And Application In Em-Based Underground Wireless Power Transfer, Usman Raza, Abdul Salam May 2020

Zenneck Waves In Decision Agriculture: An Empirical Verification And Application In Em-Based Underground Wireless Power Transfer, Usman Raza, Abdul Salam

Faculty Publications

In this article, the results of experiments for the observation of Zenneck surface waves in sub GHz frequency range using dipole antennas are presented. Experiments are conducted over three different soils for communications distances of up to 1 m. This empirical analysis confirms the existence of Zenneck waves over the soil surface. Through the power delay profile (PDP) analysis, it has been shown that other subsurface components exhibit rapid decay as compared to the Zenneck waves. A potential application of the Zenneck waves for energy transmission in the area of decision agriculture is explored. Accordingly, a novel wireless through-the-soil power ...


Numerical Modeling Of Magnetic Fields For Mirror Neutron Search Experiment, Adam Johnston May 2020

Numerical Modeling Of Magnetic Fields For Mirror Neutron Search Experiment, Adam Johnston

Pursuit - The Journal of Undergraduate Research at the University of Tennessee

This paper will outline the configuration of 3D magnetic field model simulated from electric current sources using MATLAB. The model is using 3D arrays allowing for quick and accurate numerical approximations of Bio-Savart integrals, of error < , modeling the behavior of a magnetic field due to current carrying wires. We will discuss the development of a 3D magnetic field configuration produced by the current carrying wires around a large 2.5 m diameter vacuum beam tube in the proposed mirror neutron search experiment at High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). The simulations demonstrate that the magnetic field with uniformity better than ± 2.5 mG that will allow for optimal results in experiment within the controlled range of net magnetic field magnitudes |B| 500 mG and in the large vacuum tube along 20-m neutron flight path can be achieved for an approximately 6 cm radius section at the center of the tube.


Design Of Submicron Structured Guided-Mode-Resonance Near-Infrared Polarizer, Marzia Zaman May 2020

Design Of Submicron Structured Guided-Mode-Resonance Near-Infrared Polarizer, Marzia Zaman

Theses and Dissertations

The objective of this research is to design a larger submicron linear polarizer in the near-infrared wavelength range with a wide bandwidth which can be fabricated using the conventional thin-film microfabrication technology to reduce cost. For this purpose, a gold (Au) wire-grid transmission-type transverse-magnetic (TM) polarizer and a silicon (Si) wire-grid reflection-type TM polarizer, were designed using the guided-mode-resonance filter. The Au wire-grid TM polarizer of 700nm grating width and 1200nm grating period has 95% transmittance at 2400nm, more than 1000nm resonance peak bandwidth, and an extinction ratio (ER) of around 300 with a moderated level of sidebands. The 700nm ...


Deep Learning And Polar Transformation To Achieve A Novel Adaptive Automatic Modulation Classification Framework, Pejman Ghasemzadeh May 2020

Deep Learning And Polar Transformation To Achieve A Novel Adaptive Automatic Modulation Classification Framework, Pejman Ghasemzadeh

Theses, Dissertations, and Student Research from Electrical & Computer Engineering

Automatic modulation classification (AMC) is an approach that can be leveraged to identify an observed signal's most likely employed modulation scheme without any a priori knowledge of the intercepted signal. Of the three primary approaches proposed in literature, which are likelihood-based, distribution test-based, and feature-based (FB), the latter is considered to be the most promising approach for real-world implementations due to its favorable computational complexity and classification accuracy. FB AMC is comprised of two stages: feature extraction and labeling. In this thesis, we enhance the FB approach in both stages. In the feature extraction stage, we propose a new ...


Development And Test Of High Temperature Surface Acoustic Wave Gas Sensors, Armando E. Ayes Moncada May 2020

Development And Test Of High Temperature Surface Acoustic Wave Gas Sensors, Armando E. Ayes Moncada

Electronic Theses and Dissertations

The demand for sensors in hostile environments, such as power plant environments, exhaust systems and high-temperature metallurgy environments, has risen over the past decades in a continuous attempt to increase process control, improve energy and process efficiency in production, reduce operational and maintenance costs, increase safety, and perform condition-based maintenance in equipment and structures operating in high-temperature, harsh-environment conditions. The increased reliability, improved performance, and development of new sensors and networks with a multitude of components, especially wireless networks, are the target for operation in harsh environments. Gas sensors, in particular hydrogen gas sensors, operating above 200°C are required ...


Hardware Accelerator For Star Centroiding, Nazmus Sakib May 2020

Hardware Accelerator For Star Centroiding, Nazmus Sakib

All Graduate Theses and Dissertations

Since the dawn of civilization mankind has gazed upon the night sky and looked for directions. In this modern age, the stars have proved to be a reliable reference point for navigation in space. From small-satellites for gathering weather data to inter-planetary missions like Cassini Orbiter, figuring out the location of a spacecraft has been done successfully by taking images of star filed visible from the spacecraft, processing and analyzing the image to find the stars and then finding out from a star catalog which part of the sky the patterns of the visible stars best matches. But a lot ...


Command, Control And Telemetry For Utah State University's Scintillation Prediction Observation Research Task (Sport) Mission, Jordan Haws May 2020

Command, Control And Telemetry For Utah State University's Scintillation Prediction Observation Research Task (Sport) Mission, Jordan Haws

All Graduate Theses and Dissertations

The Scintillation Prediction Observation Research Task (SPORT) is a joint United States of America (USA) and Brazil small satellite mission to address the further under-standing of the preconditions leading to equatorial plasma bubbles. Utah State University (USU) is supplying four instruments towards this SPORT mission. These four instruments will allow measurements of the electric field and plasma density in the ionosphere which will help understand what gives rise to plasma bubbles in the ionosphere.

This thesis will discuss the command, control, and telemetry communications needed to operate the SPORT USU instruments. It will cover an overview of the instruments involved ...


Integrated Photonic Device, Brittney Kuhn May 2020

Integrated Photonic Device, Brittney Kuhn

Student Scholar Symposium Abstracts and Posters

In computer mediated communication networks, information is typically encoded optically to transmit signals over long distances. At a network node, the optical signal is transformed into the electrical domain, processed electronically, and transformed back to an optical state to reach its destination. Transitioning between optical and electrical encoding of the signal is a potential security weak point, especially for quantum communication links. If information can remain in one state as it travels through the network, then security breaches can be detected and dealt with more easily. Furthermore, keeping the information in one state can reduce power consumption in the network ...


Improving Pv Module Efficiency Through Cooling, Megan Reynolds May 2020

Improving Pv Module Efficiency Through Cooling, Megan Reynolds

Chemical Engineering Undergraduate Honors Theses

The Solarbacks researched and designed a variety of cooling methods that could be used to improve the efficiency of photovoltaics. These cooling methods can be separated into two categories: active and passive methods. The active cooling method of hydraulic cooling and the passive cooling methods of heat sinks (fins), optical coatings, thermosyphons, phase change materials, and thermoelectric generators were all taken into consideration as potential cooling methods. Passive cooling methods were preferred because the use of electricity required for the cooling mechanism would reduce the net electricity and subsequent profit from the panels.

Two variations of hydraulic cooling were researched ...


Ohmic Contact Metallization For Silicon Carbide In Future Transportation And Aviation Systems, Tanner W. Rice May 2020

Ohmic Contact Metallization For Silicon Carbide In Future Transportation And Aviation Systems, Tanner W. Rice

Electrical Engineering Undergraduate Honors Theses

This paper analyzes metallization stacks in both n-type and p-type used in Silicon Carbide to create Ohmic Contacts. Silicon Carbide has shown its significance in usage as a semiconductor in high temperatures, and other extreme environments compared to its silicon counterpart. Additionally, silicon carbide exhibits many other favorable attributes such as strong radiation hardness, high power capability, and high-temperature tolerance. These attributes translate into great components for use in aviation and other future transportations by increasing reliability in a sector that already requires high reliability. Applications of this material could prove useful in fields such as aviation, among others. This ...


Reducing Emi In Sic Direct Torque Controlled Motor Drive, Michael Sykes May 2020

Reducing Emi In Sic Direct Torque Controlled Motor Drive, Michael Sykes

Electrical Engineering Undergraduate Honors Theses

This paper covers the comparison between Silicon (Si) vs Silicon Carbide (SiC) for Motor Drive systems and a possible control algorithm to limit the increased Electromagnetic Interference (EMI) caused by using SiC transistors for the inverter. Motor Drive systems need constant improvements if the world is going to move on from machines that emit CO2 and other harmful gases into the Earth’s atmosphere. One reason these electric machines are not commonplace today is because of their efficiency and other problems they may cause. Silicon transistors are the most commonplace transistor around the world today, but advances over the ...


Design And Verification Of Search Coil Inductance For Pulse Induction Metal Detection, David Desrochers May 2020

Design And Verification Of Search Coil Inductance For Pulse Induction Metal Detection, David Desrochers

Electrical Engineering Undergraduate Honors Theses

As violent attacks have increased at different venues such as schools, the need for affordable and effective metallic weapon detection has increased. Probing and scanning detection wands are the most common seen in use by guards. This project seeks to combine both probing and scanning coils into one pulse induction metal detector. The use of one drive circuit for both LC coil tank circuits further economizes the system. ANSYS Maxwell electromagnetic simulations are used to develop the geometries needed for sensitive metal detection. Analytical, simulation, and experimental methods are used to first verify the design flow for solenoid inductors. These ...


Improving Pv Module Efficiency Through Cooling, Blake Bradley May 2020

Improving Pv Module Efficiency Through Cooling, Blake Bradley

Chemical Engineering Undergraduate Honors Theses

The Solarbacks researched and designed a variety of cooling methods that could be used to improve the efficiency of photovoltaics. These cooling methods can be separated into two categories: active and passive methods. The active cooling method of hydraulic cooling and the passive cooling methods of heat sinks (fins), optical coatings, thermosyphons, phase change materials, and thermoelectric generators were all taken into consideration as potential cooling methods. Passive cooling methods were preferred because the use of electricity required for the cooling mechanism would reduce the net electricity and subsequent profit from the panels.

Two variations of hydraulic cooling were researched ...


Methods Of High-Fidelity, High-Efficiency Class-D Audio Amplification, Kaleb Kassaw May 2020

Methods Of High-Fidelity, High-Efficiency Class-D Audio Amplification, Kaleb Kassaw

Electrical Engineering Undergraduate Honors Theses

Gallium nitride-based field effect transistors (FETs) have opened a path for full-frequency-range class-D audio amplifiers with low distortion and noise, thanks to their ability to switch at much higher frequencies than that of the upper range of human hearing. Compared to traditional silicon-based transistors, GaN-based transistors offer superior efficiencies, particularly at power levels below their maxima. Paired with an analog-to-digital converter, digital signal processor, and pulse-code modulation to pulse-width modulation converter, these transistors are used to design and implement a solid-state amplifier capable of generating 100 watts of output through speakers with an impedance of 8 ohms using a 1-volt ...


Smart Textiles As The Digital Interface Of The Future, Audra Beneux May 2020

Smart Textiles As The Digital Interface Of The Future, Audra Beneux

Electrical Engineering Undergraduate Honors Theses

The growing field of smart textiles could change everyday life, adding an element of interactivity to commonly used items such as clothing and furniture. Smart textiles measure then respond to external stimuli. For scalability in the future, smart textiles must be produced using conventional textile manufacturing craftsmanship. The resulting textile must be durable and comfortable while retaining electrical capabilities. Smart textiles can be fabricating through embroidery, weaving, and knitting using conductive threads. Electronics can also be printed onto textiles. Researchers are also creating higher-order electronics, such as the transistor, on the fiber-level to make the technology in smart textiles as ...


Improving Pv Module Efficiency Through Cooling, Ashley Cox May 2020

Improving Pv Module Efficiency Through Cooling, Ashley Cox

Chemical Engineering Undergraduate Honors Theses

The Solarbacks researched and designed a variety of cooling methods that could be used to improve the efficiency of photovoltaics. These cooling methods can be separated into two categories: active and passive methods. The active cooling method of hydraulic cooling and the passive cooling methods of heat sinks (fins), optical coatings, thermosyphons, phase change materials, and thermoelectric generators were all taken into consideration as potential cooling methods. Passive cooling methods were preferred because the use of electricity required for the cooling mechanism would reduce the net electricity and subsequent profit from the panels.

Two variations of hydraulic cooling were researched ...


Improving Pv Module Efficiency Through Cooling, Harrison Dawson May 2020

Improving Pv Module Efficiency Through Cooling, Harrison Dawson

Chemical Engineering Undergraduate Honors Theses

The Solarbacks researched and designed a variety of cooling methods that could be used to improve the efficiency of photovoltaics. These cooling methods can be separated into two categories: active and passive methods. The active cooling method of hydraulic cooling and the passive cooling methods of heat sinks (fins), optical coatings, thermosyphons, phase change materials, and thermoelectric generators were all taken into consideration as potential cooling methods. Passive cooling methods were preferred because the use of electricity required for the cooling mechanism would reduce the net electricity and subsequent profit from the panels.

Two variations of hydraulic cooling were researched ...


Early Warning Solar Storm Prediction, Ian D. Lumsden, Marvin Joshi, Matthew Smalley, Aiden Rutter, Ben Klein May 2020

Early Warning Solar Storm Prediction, Ian D. Lumsden, Marvin Joshi, Matthew Smalley, Aiden Rutter, Ben Klein

Chancellor’s Honors Program Projects

No abstract provided.


Development And Upgrade Of A Laser Cooling And Trapping System Of Ultracold Potassium Atoms, Bennett Atwater May 2020

Development And Upgrade Of A Laser Cooling And Trapping System Of Ultracold Potassium Atoms, Bennett Atwater

Undergraduate Honors Theses

This thesis describes work to improve the apparatus that cools and loads potassium atoms onto the atom chip. This work consists of two main thrusts: a laser trap translator to help cool and load atoms onto the atom chip and a temperature stabilization system for the lasers that are used to laser cool potassium atoms. The current iteration of the beam translator has the ability to vertically translate a beam ±4.5 mm relative to its incident height. The translator has been shown to not alter the spatial profile of the beam through interference or obstruction. The translator’s rotation ...