Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Signal Processing

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 1623

Full-Text Articles in Electrical and Computer Engineering

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb Jun 2024

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb

Theses and Dissertations

Implantable drug delivery devices have many benefits over traditional drug administration techniques and have attracted a lot of attention in recent years. By delivering the medication directly to the tissue, they enable the use of larger localized concentrations, enhancing the efficacy of the treatment. Passive-release drug delivery systems, one of the various ways to provide medication, are great inventions. However, they cannot dispense the medication on demand since they are nonprogrammable. Therefore, active actuators are more advantageous in delivery applications. Smart material actuators, however, have greatly increased in popularity for manufacturing wearable and implantable micropumps due to their high energy …


Design Of High Efficiency Doherty Power Amplifier, Kobi G. Kelly, Severin Pindell Jun 2024

Design Of High Efficiency Doherty Power Amplifier, Kobi G. Kelly, Severin Pindell

Electrical Engineering

The project includes design and fabrication of a high efficiency power amplifier for a student design competition held at International Microwave Symposium (IMS) 2023. Efficient power amplifiers are critical for base station communication requiring efficient use of available power. The final design optimizes power added efficiency (PAE) and linearity. The amplifier will operate at 2.45 GHz. Competitive PAE above 50%, and C/I above 30 dB is achieved by leveraging a Doherty class amplifier using accurate discrete CGH4006P transistor models to simulate an efficient and linear design. Unique design features include optimal transistor bias point selection and power split ratios between …


Investigation Of Gas Dynamics In Water And Oil-Based Muds Using Das, Dts, And Dss Measurements, Temitayo S. Adeyemi Mar 2024

Investigation Of Gas Dynamics In Water And Oil-Based Muds Using Das, Dts, And Dss Measurements, Temitayo S. Adeyemi

LSU Master's Theses

Reliable prediction of gas migration velocity, void fraction, and length of gas-affected region in water and oil-based muds is essential for effective planning, control, and optimization of drilling operations. However, there is a gap in our understanding of gas behavior and dynamics in water and oil-based muds. This is a consequence of the use of experimental systems that are not representative of field-scale conditions. This study seeks to bridge the gap via the well-scale deployment of distributed fiber-optic sensors for real-time monitoring of gas behavior and dynamics in water and oil-based mud. The aforementioned parameters were estimated in real-time using …


A Sindy Hardware Accelerator For Efficient System Identification On Edge Devices, Michael Sean Gallagher Mar 2024

A Sindy Hardware Accelerator For Efficient System Identification On Edge Devices, Michael Sean Gallagher

Master's Theses

The SINDy (Sparse Identification of Non-linear Dynamics) algorithm is a method of turning a set of data representing non-linear dynamics into a much smaller set of equations comprised of non-linear functions summed together. This provides a human readable system model the represents the dynamic system analyzed. The SINDy algorithm is important for a variety of applications, including high precision industrial and robotic applications. A Hardware Accelerator was designed to decrease the time spent doing calculations. This thesis proposes an efficient hardware accelerator approach for a broad range of applications that use SINDy and similar system identification algorithms. The accelerator is …


Tree Localization In A Plantation Using Ultra Wideband Signals, Akshat Verma Jan 2024

Tree Localization In A Plantation Using Ultra Wideband Signals, Akshat Verma

The Journal of Purdue Undergraduate Research

No abstract provided.


Side Lobe Level Reduction And Array Thinning Of Concentric Circular Antenna Arrays, Alzahraa H. Nosier, Ahmed M. Elkhawaga, Mohamed E. Nasr, Nessim M. Mahmoud, Amr H. Hussein Jan 2024

Side Lobe Level Reduction And Array Thinning Of Concentric Circular Antenna Arrays, Alzahraa H. Nosier, Ahmed M. Elkhawaga, Mohamed E. Nasr, Nessim M. Mahmoud, Amr H. Hussein

Mansoura Engineering Journal

This paper presents a new beamforming technique based on the hybrid combination of the convolution algorithm (CA) and the genetic algorithm (GA) for reducing side lobe level (SLL) and array thinning of concentric circular antenna arrays (CCAA), which is denoted as C/GA technique. The CA determines the excitations of the elements, while the GA optimizes the radii of the circular arrays to adjust the half-power beamwidth (HPBW). For CCAA consisting of uniform feeding circular arrays, we assume that there are excitation coefficients that are distributed symmetrically around the array center and arranged in a vector. The excitation vector is convolved …


Gnss Software Defined Radio: History, Current Developments, And Standardization Efforts, Thomas Pany, Dennis Akos, Javier Arribas, M. Zahidul H. Bhuiyan, Pau Closas, Fabio Dovis, Ignacio Fernandez-Hernandez, Carles Fernandez-Prades, Sanjeev Gunawardena, Todd Humphreys, Zaher M. Kassas, Jose A. Lopez Salcedo, Mario Nicola, Mario L. Psiaki, Alexander Rugamer, Yong-Jin Song, Jong-Hoon Won Jan 2024

Gnss Software Defined Radio: History, Current Developments, And Standardization Efforts, Thomas Pany, Dennis Akos, Javier Arribas, M. Zahidul H. Bhuiyan, Pau Closas, Fabio Dovis, Ignacio Fernandez-Hernandez, Carles Fernandez-Prades, Sanjeev Gunawardena, Todd Humphreys, Zaher M. Kassas, Jose A. Lopez Salcedo, Mario Nicola, Mario L. Psiaki, Alexander Rugamer, Yong-Jin Song, Jong-Hoon Won

Faculty Publications

Taking the work conducted by the global navigation satellite system (GNSS) software-defined radio (SDR) working group during the last decade as a seed, this contribution summarizes, for the first time, the history of GNSS SDR development. This report highlights selected SDR implementations and achievements that are available to the public or that influenced the general development of SDR. Aspects related to the standardization process of intermediate-frequency sample data and metadata are discussed, and an update of the Institute of Navigation SDR Standard is proposed. This work focuses on GNSS SDR implementations in general-purpose processors and leaves aside developments conducted on …


An Analysis Of Precision: Occlusion And Perspective Geometry’S Role In 6d Pose Estimation, Jeffrey Choate, Derek Worth, Scott Nykl, Clark N. Taylor, Brett J. Borghetti, Christine M. Schubert Kabban Jan 2024

An Analysis Of Precision: Occlusion And Perspective Geometry’S Role In 6d Pose Estimation, Jeffrey Choate, Derek Worth, Scott Nykl, Clark N. Taylor, Brett J. Borghetti, Christine M. Schubert Kabban

Faculty Publications

Achieving precise 6 degrees of freedom (6D) pose estimation of rigid objects from color images is a critical challenge with wide-ranging applications in robotics and close-contact aircraft operations. This study investigates key techniques in the application of YOLOv5 object detection convolutional neural network (CNN) for 6D pose localization of aircraft using only color imagery. Traditional object detection labeling methods suffer from inaccuracies due to perspective geometry and being limited to visible key points. This research demonstrates that with precise labeling, a CNN can predict object features with near-pixel accuracy, effectively learning the distinct appearance of the object due to perspective …


Estimating And Detecting Slow-Wave Events In Eeg Signals, Zhenghao Xiong Dec 2023

Estimating And Detecting Slow-Wave Events In Eeg Signals, Zhenghao Xiong

McKelvey School of Engineering Theses & Dissertations

Slow wave activity (SWA) is an electroencephalogram (EEG) pattern commonly occurring during anesthesia and deep sleep, and is hence a candidate biomarker to quantify such states and understand their connection to various phenotypes. SWA consists of individual slow waves (ISW), high-amplitude deflections lasting for approximately 0.5 to 1 second, and occurring quasi-periodically. This latter fact poses a challenge for conventional power spectral density EEG analysis methods that perform best when there is persistency of oscillatory activity. In this work, we pursue a time-domain detection framework for identifying and quantifying ISWs as a metric for SWA. Our method works, in essence, …


Energy Efficiency And Fault Tolerance In Open Ran And Future Internet, Saish Urumkar, Byrav Ramamurthy, Sachin Sharma Dec 2023

Energy Efficiency And Fault Tolerance In Open Ran And Future Internet, Saish Urumkar, Byrav Ramamurthy, Sachin Sharma

Conference papers

Open Radio Access Networks (Open RAN) repre- sent a promising technological advancement within the realm of the future internet. Research efforts are currently directed towards enhancing energy efficiency and fault tolerance, which are critical aspects for both Open RAN and the future internet landscape. In the context of energy saving in Open RAN, there exists a spectrum of methods for achieving energy efficiency. These methods include the toggling of on/off states for different hardware resources such as base station units, distributed units, and radio units. Conversely, for enhancing fault tolerance in Open RAN, Software-Defined Networking (SDN) and OpenFlow based techniques …


Improving Energy Efficiency In Open Ran Through Dynamic Cpu Scheduling, Saish Urumkar, Byrav Ramamurthy, Sachin Sharma Dec 2023

Improving Energy Efficiency In Open Ran Through Dynamic Cpu Scheduling, Saish Urumkar, Byrav Ramamurthy, Sachin Sharma

Conference papers

Open RAN is a promising cellular technology that is currently undergoing extensive research for future wireless radio access networks. Achieving optimal energy efficiency in Open RAN poses a significant challenge. This paper introduces a CPU scheduling algorithm that specifically targets this chal- lenge by optimizing energy consumption at the base station while maintaining optimal performance levels. With the goal of minimizing energy consumption, the proposed algorithm dynamically adjusts the CPU core states, seamlessly switching between active and sleep modes based on the load conditions. To evaluate the algorithm’s effectiveness in terms of energy saving and performance, experimental testing is conducted …


Traffic Light Detection And V2i Communications Of An Autonomous Vehicle With The Traffic Light For An Effective Intersection Navigation Using Mavs Simulation, Mahfuzur Rahman Dec 2023

Traffic Light Detection And V2i Communications Of An Autonomous Vehicle With The Traffic Light For An Effective Intersection Navigation Using Mavs Simulation, Mahfuzur Rahman

Theses and Dissertations

Intersection Navigation plays a significant role in autonomous vehicle operation. This paper focuses on enhancing autonomous vehicle intersection navigation through advanced computer vision and Vehicle-to-Infrastructure (V2I) communication systems. The research unfolds in two phases. In the first phase, an approach utilizing YOLOv8s is proposed for precise traffic light detection and recognition, trained on the Small-Scale Traffic Light Dataset (S2TLD). The second phase establishes seamless connectivity between autonomous vehicles and traffic lights in a simulated Mississippi State University Autonomous Vehicle Simulation (MAVS) environment resembling a small city with multiple intersections. This V2I system enables the transmission of Signal Phase and Timing …


Neural Networks For Improved Signal Source Enumeration And Localization With Unsteered Antenna Arrays, John T. Rogers Ii Dec 2023

Neural Networks For Improved Signal Source Enumeration And Localization With Unsteered Antenna Arrays, John T. Rogers Ii

Theses and Dissertations

Direction of Arrival estimation using unsteered antenna arrays, unlike mechanically scanned or phased arrays, requires complex algorithms which perform poorly with small aperture arrays or without a large number of observations, or snapshots. In general, these algorithms compute a sample covriance matrix to obtain the direction of arrival and some require a prior estimate of the number of signal sources. Herein, artificial neural network architectures are proposed which demonstrate improved estimation of the number of signal sources, the true signal covariance matrix, and the direction of arrival. The proposed number of source estimation network demonstrates robust performance in the case …


Accelerating Machine Learning Inference For Satellite Component Feature Extraction Using Fpgas., Andrew Ekblad Dec 2023

Accelerating Machine Learning Inference For Satellite Component Feature Extraction Using Fpgas., Andrew Ekblad

Theses and Dissertations

Running computer vision algorithms requires complex devices with lots of computing power, these types of devices are not well suited for space deployment. The harsh radiation environment and limited power budgets have hindered the ability of running advanced computer vision algorithms in space. This problem makes running an on-orbit servicing detection algorithm very difficult. This work proposes using a low powered FPGA to accelerate the computer vision algorithms that enable satellite component feature extraction. This work uses AMD/Xilinx’s Zynq SoC and DPU IP to run model inference. Experiments in this work centered around improving model post processing by creating implementations …


Low-Power, Event-Driven System On A Chip For Charge Pulse Processing Applications, Joseph A. Schmitz Dec 2023

Low-Power, Event-Driven System On A Chip For Charge Pulse Processing Applications, Joseph A. Schmitz

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

This dissertation presents an electronic architecture and methodology capable of processing charge pulses generated by a range of sensors, including radiation detectors and tactile synthetic skin. These sensors output a charge signal proportional to the input stimulus, which is processed electronically in both the analog and digital domains. The presented work implements this functionality using an event-driven methodology, which greatly reduces power consumption compared to standard implementations. This enables new application areas that require a long operating time or compact physical dimensions, which would not otherwise be possible. The architecture is designed, fabricated, and tested in the aforementioned applications to …


Ism-Band Energy Harvesting Wireless Sensor Node, Fnu Naveed Dec 2023

Ism-Band Energy Harvesting Wireless Sensor Node, Fnu Naveed

Graduate Theses and Dissertations

In recent years, the interest in remote wireless sensor networks has grown significantly, particularly with the rapid advancements in Internet of Things (IoT) technology. These networks find diverse applications, from inventory tracking to environmental monitoring. In remote areas where grid access is unavailable, wireless sensors are commonly powered by batteries, which imposes a constraint on their lifespan. However, with the emergence of wireless energy harvesting technologies, there is a transformative potential in addressing the power challenges faced by these sensors. By harnessing energy from the surrounding environment, such as solar, thermal, vibrational, or RF sources, these sensors can potentially operate …


Analog Cancellation Of A Known Remote Interference: Hardware Realization And Analysis, James M. Doty Nov 2023

Analog Cancellation Of A Known Remote Interference: Hardware Realization And Analysis, James M. Doty

Masters Theses

The onset of quantum computing threatens commonly used schemes for information secrecy across wireless communication channels, particularly key-based data-level encryption. This calls for secrecy schemes that can provide everlasting secrecy resistant to increased computational power of an adversary. One novel physical layer scheme proposes that an intended receiver capable of performing analog cancellation of a known key-based interference would hold a significant advantage in recovering small underlying messages versus an eavesdropper performing cancellation after analog-to-digital conversion. This advantage holds even in the event that an eavesdropper can recover and use the original key in their digital cancellation. Inspired by this …


System-Level Noise Performance Of Coherent Imaging Systems, Derek J. Burrell, Joshua H. Follansbee, Mark F. Spencer, Ronald G. Driggers Nov 2023

System-Level Noise Performance Of Coherent Imaging Systems, Derek J. Burrell, Joshua H. Follansbee, Mark F. Spencer, Ronald G. Driggers

Faculty Publications

We provide an in-depth analysis of noise considerations in coherent imaging, accounting for speckle and scintillation in addition to “conventional” image noise. Specifically, we formulate closed-form expressions for total effective noise in the presence of speckle only, scintillation only, and speckle combined with scintillation. We find analytically that photon shot noise is uncorrelated with both speckle and weak-to-moderate scintillation, despite their shared dependence on the mean signal. Furthermore, unmitigated speckle and scintillation noise tends to dominate coherent-imaging performance due to a squared mean-signal dependence. Strong coupling occurs between speckle and scintillation when both are present, and we characterize this behavior …


Study Of Improved Sorting Weighting Cfar Detectors For Gaussian Environment, Souad Chabbi, Khadidja Belhi, M'Hamed Hamadouche Oct 2023

Study Of Improved Sorting Weighting Cfar Detectors For Gaussian Environment, Souad Chabbi, Khadidja Belhi, M'Hamed Hamadouche

Emirates Journal for Engineering Research

The goal of this paper is to improve the detection performance and the false alarm regulation of the conventional order statistics Constant False Alarm Rate (OS-CFAR) detectors in a non-homogeneous Gaussian environment. To this end, we design and study the New Sorting Weighting (NSW-) and the Modified Sorting Weighting (MSW-) CFAR detectors. We find closed forms of the detection ( ) and the false alarm ( ) probabilities for both detectors. Moreover, we identify the optimum pairs of weights that maximize the and ensure a constant . Finally, we prove through Monte Carlo simulations that these detectors provide better detection …


Conservative Estimation Of Inertial Sensor Errors Using Allan Variance Data, Kyle A. Lethander, Clark N. Taylor Oct 2023

Conservative Estimation Of Inertial Sensor Errors Using Allan Variance Data, Kyle A. Lethander, Clark N. Taylor

Faculty Publications

To understand the error sources present in inertial sensors, both the white (time-invariant) and correlated noise sources must be properly characterized. To understand both sources, the standard approach (IEEE standards 647-2006, 952-2020) is to compute the Allan variance of the noise and then use human-based interpretation of linear trends to estimate the separate noise sources present in a sensor. Recent work has sought to overcome the graphical nature and visual-inspection basis of this approach leading to more accurate noise estimates. However, when using noise characterization in a filter, it is important that the noise estimates be not only accurate but …


Spoken Language Processing And Modeling For Aviation Communications, Aaron Van De Brook Oct 2023

Spoken Language Processing And Modeling For Aviation Communications, Aaron Van De Brook

Doctoral Dissertations and Master's Theses

With recent advances in machine learning and deep learning technologies and the creation of larger aviation-specific corpora, applying natural language processing technologies, especially those based on transformer neural networks, to aviation communications is becoming increasingly feasible. Previous work has focused on machine learning applications to natural language processing, such as N-grams and word lattices. This thesis experiments with a process for pretraining transformer-based language models on aviation English corpora and compare the effectiveness and performance of language models transfer learned from pretrained checkpoints and those trained from their base weight initializations (trained from scratch). The results suggest that transformer language …


Trumpet Directivity From A Rotating Semicircular Array, Samuel D. Bellows, Joseph E. Avila, Timothy W. Leishman Sep 2023

Trumpet Directivity From A Rotating Semicircular Array, Samuel D. Bellows, Joseph E. Avila, Timothy W. Leishman

Directivity

The directivity function of a played musical instrument describes the angular dependence of its acoustic radiation and diffraction about the instrument, musician, and musician’s chair. Directivity influences sound in rehearsal, performance, and recording environments and signals in audio systems. Because high-resolution, spherically comprehensive measurements of played musical instruments have been unavailable in the past, the authors have undertaken research to produce and share such data for studies of musical instruments, simulations of acoustical environments, optimizations of microphone placements, and other applications. The authors acquired the data from repeated chromatic scales produced by a trumpet played at mezzo-forte in an anechoic …


Exploring The Use Of Audible Sound In Bone Density Diagnostic Devices, Evan J. Bess Aug 2023

Exploring The Use Of Audible Sound In Bone Density Diagnostic Devices, Evan J. Bess

Electronic Theses and Dissertations

Osteoporosis is a medical condition in which there is a progressive degradation of bone tissue that correlates with a characteristic decrease in bone density (BD). It is estimated that osteoporosis affects over 200 million people globally and is responsible for 8.9 million fractures annually. Populations at risk for developing osteoporosis include post-menopausal women, diabetic patients, and the elderly, representing a large population within the state of Maine. Current densitometric and sonometric devices used to monitor BD include quantitative computed tomography (QCT), dual-energy x-ray absorption (DXA), and ultrasound (QUS). All methods are expensive and, in the cases of QCT and DXA, …


Evaluating Eeg–Emg Fusion-Based Classification As A Method For Improving Control Of Wearable Robotic Devices For Upper-Limb Rehabilitation, Jacob G. Tryon Aug 2023

Evaluating Eeg–Emg Fusion-Based Classification As A Method For Improving Control Of Wearable Robotic Devices For Upper-Limb Rehabilitation, Jacob G. Tryon

Electronic Thesis and Dissertation Repository

Musculoskeletal disorders are the biggest cause of disability worldwide, and wearable mechatronic rehabilitation devices have been proposed for treatment. However, before widespread adoption, improvements in user control and system adaptability are required. User intention should be detected intuitively, and user-induced changes in system dynamics should be unobtrusively identified and corrected. Developments often focus on model-dependent nonlinear control theory, which is challenging to implement for wearable devices.

One alternative is to incorporate bioelectrical signal-based machine learning into the system, allowing for simpler controller designs to be augmented by supplemental brain (electroencephalography/EEG) and muscle (electromyography/EMG) information. To extract user intention better, sensor …


Watch: A Distributed Clock Time Offset Estimation Tool On The Platform For Open Wireless Data-Driven Experimental Research, Cassie Jeng Aug 2023

Watch: A Distributed Clock Time Offset Estimation Tool On The Platform For Open Wireless Data-Driven Experimental Research, Cassie Jeng

McKelvey School of Engineering Theses & Dissertations

The synchronization of the clocks used at different devices across space is of critical importance in wireless communications networks. Each device’s local clock differs slightly, affecting the times at which packets are transmitted from different nodes in the network. This thesis provides experimentation and software development on POWDER, the Platform for Open, Wireless Data-driven Experimental Research, an open wireless testbed across the University of Utah campus. We build upon Shout, a suite of Python scripts that allow devices to iteratively transmit and receive with each other and save the collected data. We introduce WATCH, an experimental method to estimate clock …


Fingerprinting For Chiplet Architectures Using Power Distribution Network Transients, Matthew G. Burke Aug 2023

Fingerprinting For Chiplet Architectures Using Power Distribution Network Transients, Matthew G. Burke

Masters Theses

Chiplets have become an increasingly popular technology for extending Moore's Law and improving the reliability of integrated circuits. They do this by placing several small, interacting chips on an interposer rather than the traditional, single chip used for a device. Like any other type of integrated circuit, chiplets are in need of a physical layer of security to defend against hardware Trojans, counterfeiting, probing, and other methods of tampering and physical attacks.

Power distribution networks are ubiquitous across chiplet and monolithic ICs, and are essential to the function of the device. Thus, we propose a method of fingerprinting transient signals …


Exploring Bistatic Scattering Modeling For Land Surface Applications Using Radio Spectrum Recycling In The Signal Of Opportunity Coherent Bistatic Simulator, Dylan R. Boyd Aug 2023

Exploring Bistatic Scattering Modeling For Land Surface Applications Using Radio Spectrum Recycling In The Signal Of Opportunity Coherent Bistatic Simulator, Dylan R. Boyd

Theses and Dissertations

The potential for high spatio-temporal resolution microwave measurements has urged the adoption of the signals of opportunity (SoOp) passive radar technique for use in remote sensing. Recent trends in particular target highly complex remote sensing problems such as root-zone soil moisture and snow water equivalent. This dissertation explores the continued open-sourcing of the SoOp coherent bistatic scattering model (SCoBi) and its use in soil moisture sensing applications. Starting from ground-based applications, the feasibility of root-zone soil moisture remote sensing is assessed using available SoOp resources below L-band. A modularized, spaceborne model is then developed to simulate land-surface scattering and delay-Doppler …


A Novel Brain Computer Interface Design, Steven Vogan Aug 2023

A Novel Brain Computer Interface Design, Steven Vogan

Senior Honors Theses

A brain computer interface (BCI) is a system which connects neural signals to a computer system. They have been used for controlling systems including robotics, on-screen computer control such as mouse movement, typing, and synthesizing audio signals. Invasive, or implanted, systems are often long-term medical solutions, or used for research where very clear signal is required. Non-invasive systems usually rely on exterior signals gathered through a headset using one or more electrode sensors. These signals are composed of sums of neuron activation potentials from brain activity and can be used to determine particular aspects of brain function. All BCIs rely …


Improved Vehicle-Bridge Interaction Modeling And Automation Of Bridge System Identification Techniques, Omar Abuodeh Aug 2023

Improved Vehicle-Bridge Interaction Modeling And Automation Of Bridge System Identification Techniques, Omar Abuodeh

All Dissertations

The Federal Highway Administration (FHWA) recognizes the necessity for cost-effective and practical system identification (SI) techniques within structural health monitoring (SHM) frameworks for asset management applications. Indirect health monitoring (IHM), a promising SHM approach, utilizes accelerometer-equipped vehicles to measure bridge modal properties (e.g., natural frequencies, damping ratios, mode shapes) through bridge vibration data to assess the bridge's condition. However, engineers and researchers often encounter noise from road roughness, environmental factors, and vehicular components in collected vehicle signals. This noise contaminates the vehicle signal with spurious modes corresponding to stochastic frequencies, impacting damage monitoring assessments. Thus, an efficient and reliable SI …


Cyberinet: Integrated Semi-Modular Sensors For The Computer-Augmented Clarinet, Matthew Bardin Aug 2023

Cyberinet: Integrated Semi-Modular Sensors For The Computer-Augmented Clarinet, Matthew Bardin

LSU Doctoral Dissertations

The Cyberinet is a new Augmented instrument designed to easily and intuitively provide a method of computer-enhanced performance to the Clarinetist to allow for greater control and expressiveness in a performance. A performer utilizing the Cyberinet is able to seamlessly switch between a traditional performance setting and an augmented one. Towards this, the Cyberinet is a hardware replacement for a portion of a Clarinet containing a variety of sensors embedded within the unit. These sensors collect various real time data motion data of the performer and air fow within the instrument. Additional sensors can be connected to the Cyberinet to …