Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Deep learning

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 200

Full-Text Articles in Electrical and Computer Engineering

Motion Magnification-Inspired Feature Manipulation For Deepfake Detection, Aydamir Mirzayev, Hamdi Di̇bekli̇oğlu Feb 2024

Motion Magnification-Inspired Feature Manipulation For Deepfake Detection, Aydamir Mirzayev, Hamdi Di̇bekli̇oğlu

Turkish Journal of Electrical Engineering and Computer Sciences

Recent advances in deep learning, increased availability of large-scale datasets, and improvement of accelerated graphics processing units facilitated creation of an unprecedented amount of synthetically generated media content with impressive visual quality. Although such technology is used predominantly for entertainment, there is widespread practice of using deepfake technology for malevolent ends. This potential for malicious use necessitates the creation of detection methods capable of reliably distinguishing manipulated video content. In this work we aim to create a learning-based detection method for synthetically generated videos. To this end, we attempt to detect spatiotemporal inconsistencies by leveraging a learning-based magnification-inspired feature manipulation …


Automated Identification Of Vehicles In Very High-Resolution Uav Orthomosaics Using Yolov7 Deep Learning Model, Esra Yildirim, Umut Güneş Seferci̇k, Taşkın Kavzoğlu Feb 2024

Automated Identification Of Vehicles In Very High-Resolution Uav Orthomosaics Using Yolov7 Deep Learning Model, Esra Yildirim, Umut Güneş Seferci̇k, Taşkın Kavzoğlu

Turkish Journal of Electrical Engineering and Computer Sciences

The utilization of remote sensing products for vehicle detection through deep learning has gained immense popularity, especially due to the advancement of unmanned aerial vehicles (UAVs). UAVs offer millimeter-level spatial resolution at low flight altitudes, which surpasses traditional airborne platforms. Detecting vehicles from very high-resolution UAV data is crucial in numerous applications, including parking lot and highway management, traffic monitoring, search and rescue missions, and military operations. Obtaining UAV data at desired periods allows the detection and tracking of target objects even several times during a day. Despite challenges such as diverse vehicle characteristics, traffic congestion, and hardware limitations, the …


Nonuniform Sampling-Based Breast Cancer Classification, Santiago Posso Jan 2024

Nonuniform Sampling-Based Breast Cancer Classification, Santiago Posso

Theses and Dissertations--Electrical and Computer Engineering

The emergence of deep learning models and their success in visual object recognition have fueled the medical imaging community's interest in integrating these algorithms to improve medical diagnosis. However, natural images, which have been the main focus of deep learning models and mammograms, exhibit fundamental differences. First, breast tissue abnormalities are often smaller than salient objects in natural images. Second, breast images have significantly higher resolutions but are generally heavily downsampled to fit these images to deep learning models. Models that handle high-resolution mammograms require many exams and complex architectures. Additionally, spatially resizing mammograms leads to losing discriminative details essential …


A Wavegan Approach For Mmwave-Based Fanet Topology Optimization, Enas Odat, Hakim Ghazzai, Ahmad Alsharoa Jan 2024

A Wavegan Approach For Mmwave-Based Fanet Topology Optimization, Enas Odat, Hakim Ghazzai, Ahmad Alsharoa

Electrical and Computer Engineering Faculty Research & Creative Works

The integration of dynamic Flying Ad hoc Networks (FANETs) and millimeter Wave (mmWave) technology can offer a promising solution for numerous data-intensive applications, as it enables the establishment of a robust flying infrastructure with significant data transmission capabilities. However, to enable effective mmWave communication within this dynamic network, it is essential to precisely align the steerable antennas mounted on Unmanned Aerial Vehicles (UAVs) with their corresponding peer units. Therefore, it is important to design a novel approach that can quickly determine an optimized alignment and network topology. In this paper, we propose a Generative Adversarial Network (GAN)-based approach, called WaveGAN, …


A Survey On Few-Shot Class-Incremental Learning, Songsong Tian, Lusi Li, Weijun Li, Hang Ran, Xin Ning, Prayag Tiwari Jan 2024

A Survey On Few-Shot Class-Incremental Learning, Songsong Tian, Lusi Li, Weijun Li, Hang Ran, Xin Ning, Prayag Tiwari

Computer Science Faculty Publications

Large deep learning models are impressive, but they struggle when real-time data is not available. Few-shot class-incremental learning (FSCIL) poses a significant challenge for deep neural networks to learn new tasks from just a few labeled samples without forgetting the previously learned ones. This setup can easily leads to catastrophic forgetting and overfitting problems, severely affecting model performance. Studying FSCIL helps overcome deep learning model limitations on data volume and acquisition time, while improving practicality and adaptability of machine learning models. This paper provides a comprehensive survey on FSCIL. Unlike previous surveys, we aim to synthesize few-shot learning and incremental …


Urban Flood Extent Segmentation And Evaluation From Real-World Surveillance Camera Images Using Deep Convolutional Neural Network, Yidi Wang, Yawen Shen, Behrouz Salahshour, Mecit Cetin, Khan Iftekharuddin, Navid Tahvildari, Guoping Huang, Devin K. Harris, Kwame Ampofo, Jonathan L. Goodall Jan 2024

Urban Flood Extent Segmentation And Evaluation From Real-World Surveillance Camera Images Using Deep Convolutional Neural Network, Yidi Wang, Yawen Shen, Behrouz Salahshour, Mecit Cetin, Khan Iftekharuddin, Navid Tahvildari, Guoping Huang, Devin K. Harris, Kwame Ampofo, Jonathan L. Goodall

Civil & Environmental Engineering Faculty Publications

This study explores the use of Deep Convolutional Neural Network (DCNN) for semantic segmentation of flood images. Imagery datasets of urban flooding were used to train two DCNN-based models, and camera images were used to test the application of the models with real-world data. Validation results show that both models extracted flood extent with a mean F1-score over 0.9. The factors that affected the performance included still water surface with specular reflection, wet road surface, and low illumination. In testing, reduced visibility during a storm and raindrops on surveillance cameras were major problems that affected the segmentation of flood extent. …


Investigation Of Software Defined Radio And Deep Learning For Ground Penetrating Radar, Yan Zhang Jan 2024

Investigation Of Software Defined Radio And Deep Learning For Ground Penetrating Radar, Yan Zhang

Graduate College Dissertations and Theses

Ground Penetrating Radar (GPR) is a non-invasive geophysical method that uses radar pulses to image the subsurface. This technology is widely used to detect and map subsurface structures, utilities, and features without the need for physical excavation. Traditional GPR systems, which rely on fixed radio frequency electronics like Application-Specific Integrated Circuits (ASICs), have significant limitations in their flexibility and adaptability. Adjusting operational parameters such as waveform, frequency, and modulation schemes is challenging, which is crucial for tailoring performance to specific tasks or conditions. The considerable size and weight of these systems restrict their applicability in harsh or confined spaces where …


Melanoma Detection Based On Deep Learning Networks, Sanjay Devaraneni Dec 2023

Melanoma Detection Based On Deep Learning Networks, Sanjay Devaraneni

Electronic Theses, Projects, and Dissertations

Our main objective is to develop a method for identifying melanoma enabling accurate assessments of patient’s health. Skin cancer, such as melanoma can be extremely dangerous if not detected and treated early. Detecting skin cancer accurately and promptly can greatly increase the chances of survival. To achieve this, it is important to develop a computer-aided diagnostic support system. In this study a research team introduces a sophisticated transfer learning model that utilizes Resnet50 to classify melanoma. Transfer learning is a machine learning technique that takes advantage of trained models, for similar tasks resulting in time saving and enhanced accuracy by …


A Comparative Study Of Yolo Models And A Transformer-Based Yolov5 Model For Mass Detection In Mammograms, Damla Coşkun, Dervi̇ş Karaboğa, Alper Baştürk, Bahri̇ye Akay, Özkan Ufuk Nalbantoğlu, Serap Doğan, İshak Paçal, Meryem Altin Karagöz Nov 2023

A Comparative Study Of Yolo Models And A Transformer-Based Yolov5 Model For Mass Detection In Mammograms, Damla Coşkun, Dervi̇ş Karaboğa, Alper Baştürk, Bahri̇ye Akay, Özkan Ufuk Nalbantoğlu, Serap Doğan, İshak Paçal, Meryem Altin Karagöz

Turkish Journal of Electrical Engineering and Computer Sciences

Breast cancer is a prevalent form of cancer across the globe, and if it is not diagnosed at an early stage it can be life-threatening. In order to aid in its diagnosis, detection, and classification, computer-aided detection (CAD) systems are employed. You Only Look Once (YOLO)-based CAD algorithms have become very popular owing to their highly accurate results for object detection tasks in recent years. Therefore, the most popular YOLO models are implemented to compare the performance in mass detection with various experiments on the INbreast dataset. In addition, a YOLO model with an integrated Swin Transformer in its backbone …


Infrared Imaging Segmentation Employing An Explainable Deep Neural Network, Xinfei Liao, Dan Wang, Zairan Li, Nilanjan Dey, Rs Simon, Fuqian Shi Oct 2023

Infrared Imaging Segmentation Employing An Explainable Deep Neural Network, Xinfei Liao, Dan Wang, Zairan Li, Nilanjan Dey, Rs Simon, Fuqian Shi

Turkish Journal of Electrical Engineering and Computer Sciences

Explainable AI (XAI) improved by a deep neural network (DNN) of a residual neural network (ResNet) and long short-term memory networks (LSTMs), termed XAIRL, is proposed for segmenting foot infrared imaging datasets. First, an infrared sensor imaging dataset is acquired by a foot infrared sensor imaging device and preprocessed. The infrared sensor image features are then defined and extracted with XAIRL being applied to segment the dataset. This paper compares and discusses our results with XAIRL. Evaluation indices are applied to perform various measurements for foot infrared image segmentation including accuracy, precision, recall, F1 score, intersection over union (IoU), Dice …


Cognitive Digital Modelling For Hyperspectral Image Classification Using Transfer Learning Model, Mohammad Shabaz, Mukesh Soni Oct 2023

Cognitive Digital Modelling For Hyperspectral Image Classification Using Transfer Learning Model, Mohammad Shabaz, Mukesh Soni

Turkish Journal of Electrical Engineering and Computer Sciences

Deep convolutional neural networks can fully use the intrinsic relationship between features and improve the separability of hyperspectral images, which has received extensive in recent years. However, the need for a large number of labelled samples to train deep network models limits the application of such methods. The idea of transfer learning is introduced into remote sensing image classification to reduce the need for the number of labelled samples. In particular, the situation in which each class in the target picture only has one labelled sample is investigated. In the target domain, the number of training samples is enlarged by …


Spoken Language Processing And Modeling For Aviation Communications, Aaron Van De Brook Oct 2023

Spoken Language Processing And Modeling For Aviation Communications, Aaron Van De Brook

Doctoral Dissertations and Master's Theses

With recent advances in machine learning and deep learning technologies and the creation of larger aviation-specific corpora, applying natural language processing technologies, especially those based on transformer neural networks, to aviation communications is becoming increasingly feasible. Previous work has focused on machine learning applications to natural language processing, such as N-grams and word lattices. This thesis experiments with a process for pretraining transformer-based language models on aviation English corpora and compare the effectiveness and performance of language models transfer learned from pretrained checkpoints and those trained from their base weight initializations (trained from scratch). The results suggest that transformer language …


Non-Destructive Evaluation Of White Striping And Microbial Spoilage Of Broiler Breast Meat Using Structured-Illumination Reflectance Imaging, Ebenezer O. Olaniyi Aug 2023

Non-Destructive Evaluation Of White Striping And Microbial Spoilage Of Broiler Breast Meat Using Structured-Illumination Reflectance Imaging, Ebenezer O. Olaniyi

Theses and Dissertations

Manual inspection is a prevailing practice for quality assessment of poultry meat, but it is labor-intensive, tedious, and subjective. This thesis aims to assess the efficacy of an emerging structured illumination reflectance imaging (SIRI) technique with machine learning approaches for assessing WS and microbial spoilage in broiler breast meat. Broiler breast meat samples were imaged by an in house-assembled SIRI platform under sinusoidal illumination. In first experiment, handcrafted texture features were extracted from direct component (DC, corresponding to conventional uniform illumination) and amplitude component (AC, unique to the use of sinusoidal illumination) images retrieved from raw SIRI pattern images build …


Deep Learning Based Power System Stability Assessment For Reduced Wecc System, Yinfeng Zhao Aug 2023

Deep Learning Based Power System Stability Assessment For Reduced Wecc System, Yinfeng Zhao

Doctoral Dissertations

Power system stability is the ability of power system, for a giving initial operating condition, to reach a new operation condition with most of the system variables bounded in normal range after subjecting to a short or long disturbance. Traditional power system stability mainly uses time-domain simulation which is very time consuming and only appropriate for offline assessment.

Nowadays, with increasing penetration of inverter based renewable, large-scale distributed energy storage integration and operation uncertainty brought by weather and electricity market, system dynamic and operating condition is more dramatic, and traditional power system stability assessment based on scheduling may not be …


Distributed Deep Learning Optimization Of Heat Equation Inverse Problem Solvers, Zhuowei Wang, Le Yang, Haoran Lin, Genping Zhao, Zixuan Liu, Xiaoyu Song Jul 2023

Distributed Deep Learning Optimization Of Heat Equation Inverse Problem Solvers, Zhuowei Wang, Le Yang, Haoran Lin, Genping Zhao, Zixuan Liu, Xiaoyu Song

Electrical and Computer Engineering Faculty Publications and Presentations

The inversion problem of partial differential equation plays a crucial role in cyber-physical systems applications. This paper presents a novel deep learning optimization approach to constructing a solver of heat equation inversion. To improve the computational efficiency in large-scale industrial applications, data and model parallelisms are incorporated on a platform of multiple GPUs. The advanced Ring-AllReduce architecture is harnessed to achieve an acceleration ratio of 3.46. Then a new multi-GPUs distributed optimization method GradReduce is proposed based on Ring-AllReduce architecture. This method optimizes the original data communication mechanism based on mechanical time and frequency by introducing the gradient transmission scheme …


Lightweight Deep Neural Network Models For Electromyography Signal Recognition For Prosthetic Control, Ahmet Mert Jul 2023

Lightweight Deep Neural Network Models For Electromyography Signal Recognition For Prosthetic Control, Ahmet Mert

Turkish Journal of Electrical Engineering and Computer Sciences

In this paper, lightweight deep learning methods are proposed to recognize multichannel electromyography (EMG) signals against varying contraction levels. The classical machine learning, and signal processing methods namely, linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), root mean square (RMS), and waveform length (WL) are adopted to convolutional neural network (CNN), and long short-term memory neural network (LSTM). Eight-channel recordings of nine amputees from a publicly available dataset are used for training and testing the proposed models considering prosthetic control strategies. Six class hand movements with three contraction levels are applied to WL and RMS-based feature extraction. After that, they …


Improving Unet Segmentation Performance Using An Ensemble Model In Images Containing Railway Lines, Mehmet Sevi̇, İlhan Aydin Jul 2023

Improving Unet Segmentation Performance Using An Ensemble Model In Images Containing Railway Lines, Mehmet Sevi̇, İlhan Aydin

Turkish Journal of Electrical Engineering and Computer Sciences

This study aims to make sense of the autonomous system and the railway environment for railway vehicles. For this purpose, by determining the railway line, information about the general condition of the line can be obtained along the way. In addition, objects such as pedestrian crossings, people, cars, and traffic signs on the line will be extracted. The rails and the rail environment in the images will be segmented with a semantic segmentation network. In order to ensure the safety of rail transport, computer vision, and deep learning-based methods are increasingly used to inspect railway tracks and surrounding objects. In …


Long-Term Human Video Activity Quantification In Collaborative Learning Environments, Venkatesh Jatla May 2023

Long-Term Human Video Activity Quantification In Collaborative Learning Environments, Venkatesh Jatla

Electrical and Computer Engineering ETDs

Research on video activity detection has mainly focused on identifying well-defined human activities in short video segments, often requiring large-parameter systems and extensive training datasets. This dissertation introduces a low-parameter, modular system with rapid inference capabilities, capable of being trained on limited datasets without transfer learning from large-parameter systems. The system accurately detects specific activities and associates them with students in real-life classroom videos. Additionally, an interactive web-based application is developed to visualize human activity maps over long classroom videos.

Long-term video activity detection in classrooms presents challenges, such as multiple simultaneous activities, rapid transitions, long-term occlusions, duration exceeding 15 …


Task Offloading And Resource Allocation Based On Dl-Ga In Mobile Edge Computing, Hang Gu, Minjuan Zhang, Wenzao Li, Yuwen Pan May 2023

Task Offloading And Resource Allocation Based On Dl-Ga In Mobile Edge Computing, Hang Gu, Minjuan Zhang, Wenzao Li, Yuwen Pan

Turkish Journal of Electrical Engineering and Computer Sciences

With the rapid development of 5G and the Internet of Things (IoT), the traditional cloud computing architecture struggle to support the booming computation-intensive and latency-sensitive applications. Mobile edge computing (MEC) has emerged as a solution which enables abundant IoT tasks to be offloaded to edge services. However, task offloading and resource allocation remain challenges in MEC framework. In this paper, we add the total number of offloaded tasks to the optimization objective and apply algorithm called Deep Learning Trained by Genetic Algorithm (DL-GA) to maximize the value function, which is defined as a weighted sum of energy consumption, latency, and …


An Efficient Deep Learning Architecture For Turkish Lira Recognition And Counterfeit Detection, Burak İyi̇kesi̇ci̇, Ergun Erçelebi̇ May 2023

An Efficient Deep Learning Architecture For Turkish Lira Recognition And Counterfeit Detection, Burak İyi̇kesi̇ci̇, Ergun Erçelebi̇

Turkish Journal of Electrical Engineering and Computer Sciences

Banknote counterfeiting is a common practice worldwide. Due to the recent developments in technology, banknote imitation has become easier than before. There are different kinds of algorithms developed for the detection of counterfeit banknotes for different countries in the literature. The earlier algorithms utilized classical image processing techniques where the implementations of machine learning and deep learning algorithms appeared with the developments in the artificial intelligence field as well as the computer hardware. In this study, a novel convolutional neural networks-based deep learning algorithm has been developed that detects counterfeit Turkish Lira banknotes and their denominations using the banknote images …


3d Point Cloud Classification With Acgan-3d And Vacwgan-Gp, Onur Ergün, Yusuf Sahi̇lli̇oğlu Mar 2023

3d Point Cloud Classification With Acgan-3d And Vacwgan-Gp, Onur Ergün, Yusuf Sahi̇lli̇oğlu

Turkish Journal of Electrical Engineering and Computer Sciences

Machine learning and deep learning techniques are widely used to make sense of 3D point cloud data which became ubiquitous and important due to the recent advances in 3D scanning technologies and other sensors. In this work, we propose two networks to predict the class of the input 3D point cloud: 3D Auxiliary Classifier Generative Adversarial Network (ACGAN-3D) and Versatile Auxiliary Conditional Wasserstein Generative Adversarial Network with Gradient Penalty (VACWGAN-GP). Unlike other classifiers, we are able to enlarge the limited data set with the data produced by generative models. We consequently aim to increase the success of the model by …


Deep Learning For Detection Of Upper And Lower Body Movements, Kyle B. Lacroix Feb 2023

Deep Learning For Detection Of Upper And Lower Body Movements, Kyle B. Lacroix

Electronic Thesis and Dissertation Repository

When humans repeat the same motion, the tendons, muscles, and nerves can be damaged, causing repetitive stress injuries (RSI). Symptoms usually begin slowly and become more intense and constant over time. If the motions that lead to RSI are recognized early, these injuries can be prevented. A preventative approach could be implemented in factories to warn workers about possible injuries. By detecting the movements that can cause RSI, the worker can be alerted to stop carrying out those movements. For this purpose, machine learning models can detect human motion with the human activity recognition (HAR) model. HAR models typically require …


Noise2clean: Cross-Device Side-Channel Traces Denoising With Unsupervised Deep Learning, Honggang Yu, Mei Wang, Xiyu Song, Haoqi Shan, Hongbing Qiu, Junyi Wang, Kaichen Yang Feb 2023

Noise2clean: Cross-Device Side-Channel Traces Denoising With Unsupervised Deep Learning, Honggang Yu, Mei Wang, Xiyu Song, Haoqi Shan, Hongbing Qiu, Junyi Wang, Kaichen Yang

Michigan Tech Publications

Deep learning (DL)-based side-channel analysis (SCA) has posed a severe challenge to the security and privacy of embedded devices. During its execution, an attacker exploits physical SCA leakages collected from profiling devices to create a DL model for recovering secret information from victim devices. Despite this success, recent works have demonstrated that certain countermeasures, such as random delay interrupts or clock jitters, would make these attacks more complex and less practical in real-world scenarios. To address this challenge, we present a novel denoising scheme that exploits the U-Net model to pre-process SCA traces for “noises” (i.e., countermeasures) removal. Specifically, we …


Pt-Net: A Multi-Model Machine Learning Approach For Smarter Next-Generation Wearable Tremor Suppression Devices For Parkinson's Disease Tremor, Anas Ibrahim Jan 2023

Pt-Net: A Multi-Model Machine Learning Approach For Smarter Next-Generation Wearable Tremor Suppression Devices For Parkinson's Disease Tremor, Anas Ibrahim

Electronic Thesis and Dissertation Repository

According to the World Health Organization (WHO), Parkinson's Disease (PD) is the second most common neurodegenerative condition that can cause tremors and other motor and non motor related symptoms. Medication and deep brain stimulation (DBS) are often used to treat tremor; however, medication is not always effective and has adverse effects, and DBS is invasive and carries a significant risk of complications. Wearable tremor suppression devices (WTSDs) have been proposed as a possible alternative, but their effectiveness is limited by the tremor models they use, which introduce a phase delay that decreases the performance of the devices. Additionally, the availability …


Efficient Training On Alzheimer’S Disease Diagnosis With Learnable Weighted Pooling For 3d Pet Brain Image Classification, Xin Xing, Muhammad Usman Rafique, Gongbo Liang, Hunter Blanton, Zu Zhang, Chris Wang, Nathan Jacobs, Ai-Ling Lin Jan 2023

Efficient Training On Alzheimer’S Disease Diagnosis With Learnable Weighted Pooling For 3d Pet Brain Image Classification, Xin Xing, Muhammad Usman Rafique, Gongbo Liang, Hunter Blanton, Zu Zhang, Chris Wang, Nathan Jacobs, Ai-Ling Lin

Computer Science Faculty Publications

Three-dimensional convolutional neural networks (3D CNNs) have been widely applied to analyze Alzheimer’s disease (AD) brain images for a better understanding of the disease progress or predicting the conversion from cognitively impaired (CU) or mild cognitive impairment status. It is well-known that training 3D-CNN is computationally expensive and with the potential of overfitting due to the small sample size available in the medical imaging field. Here we proposed a novel 3D-2D approach by converting a 3D brain image to a 2D fused image using a Learnable Weighted Pooling (LWP) method to improve efficient training and maintain comparable model performance. By …


Transfer Learning Using Infrared And Optical Full Motion Video Data For Gender Classification, Alexander M. Glandon, Joe Zalameda, Khan M. Iftekharuddin, Gabor F. Fulop (Ed.), David Z. Ting (Ed.), Lucy L. Zheng (Ed.) Jan 2023

Transfer Learning Using Infrared And Optical Full Motion Video Data For Gender Classification, Alexander M. Glandon, Joe Zalameda, Khan M. Iftekharuddin, Gabor F. Fulop (Ed.), David Z. Ting (Ed.), Lucy L. Zheng (Ed.)

Electrical & Computer Engineering Faculty Publications

This work is a review and extension of our ongoing research in human recognition analysis using multimodality motion sensor data. We review our work on hand crafted feature engineering for motion capture skeleton (MoCap) data, from the Air Force Research Lab for human gender followed by depth scan based skeleton extraction using LIDAR data from the Army Night Vision Lab for person identification. We then build on these works to demonstrate a transfer learning sensor fusion approach for using the larger MoCap and smaller LIDAR data for gender classification.


Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study, Haben Yhdego, Christopher Paolini, Michel Audette Jan 2023

Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study, Haben Yhdego, Christopher Paolini, Michel Audette

Electrical & Computer Engineering Faculty Publications

Real-time fall detection using a wearable sensor remains a challenging problem due to high gait variability. Furthermore, finding the type of sensor to use and the optimal location of the sensors are also essential factors for real-time fall-detection systems. This work presents real-time fall-detection methods using deep learning models. Early detection of falls, followed by pneumatic protection, is one of the most effective means of ensuring the safety of the elderly. First, we developed and compared different data-segmentation techniques for sliding windows. Next, we implemented various techniques to balance the datasets because collecting fall datasets in the real-time setting has …


Embedded Ai For Wheat Yellow Rust Infection Type Classification, Uferah Shafi, Rafia Mumtaz, Muhammad Deedahwar Mazhar Qureshi, Zahid Mahmood, Sikander Khan Tanveer, Ihsan Ul Haq, Syed Mohammad Hassan Zaidi Jan 2023

Embedded Ai For Wheat Yellow Rust Infection Type Classification, Uferah Shafi, Rafia Mumtaz, Muhammad Deedahwar Mazhar Qureshi, Zahid Mahmood, Sikander Khan Tanveer, Ihsan Ul Haq, Syed Mohammad Hassan Zaidi

Articles

Wheat is the most important and dominating crop in Pakistan in terms of production and acreage, which is grown on 37% of the cultivated area, accounting for 70% of the total production. However, wheat yield is highly affected by stripe rust, which is considered the most devastating fungal disease, causing 5.5 million tonnes of loss per year globally. In order to minimize this loss, the accurate and timely detection of rust disease is crucial instead of manual inspection. Towards this end, we propose a system to detect wheat rust disease and classify its infection types into four classes, including healthy, …


Interpreting Energy Utilisation With Shapley Additive Explanations By Defining A Synthetic Data Generator For Plausible Charging Sessions Of Electric Vehicles, Prasant Kumar Mohanty, Gayadhar Panda, Malabika Basu, Diptendu Sinha Roy Jan 2023

Interpreting Energy Utilisation With Shapley Additive Explanations By Defining A Synthetic Data Generator For Plausible Charging Sessions Of Electric Vehicles, Prasant Kumar Mohanty, Gayadhar Panda, Malabika Basu, Diptendu Sinha Roy

Articles

Electric vehicles (EVs) are an effective solution for reducing reliance on non-renewable energy sources. However, the lack of charging infrastructure and concerns over their range are some of the biggest hurdles to adopting EVs. Charging infrastructure for EVs is, however, on the rise. Proper planning of charging stations vis-`a-vis road networks and related points of interest such as transportation hubs, schools, shopping centres, etc., alongside such roads become vital to laying out a plan for such infrastructure, particularly for developing countries like India where EV adoption is relatively in a nascent stage. Synthetic datasets can help overcome these hurdles and …


Machine Learning Based Pcb/Package Stack-Up Optimization For Signal Integrity, Wenchang Huang, Jiahuan Huang, Minseok Kim, Bumhee Bae, Chulsoon Hwang, Subin Kim Jan 2023

Machine Learning Based Pcb/Package Stack-Up Optimization For Signal Integrity, Wenchang Huang, Jiahuan Huang, Minseok Kim, Bumhee Bae, Chulsoon Hwang, Subin Kim

Electrical and Computer Engineering Faculty Research & Creative Works

PCB/package stack-up design optimization is time-consuming and requiring a great deal of experience. Although some iterative optimization algorithms are applied to implement automatic stack-up design, evaluating the results of each iteration is still time-intensive. This paper proposes a combined Bayesian optimization-artificial neural network (BO-ANN) algorithm, utilizing a trained ANN-based surrogate model to replace a 2D cross-section analysis tool for fast PCB/package stack-up design optimization. With the acceleration of ANN, the proposed BO-ANN algorithm can finish 100 iterations in 40 seconds while achieving the target characteristic impedance. To better generalize the BO-ANN algorithm, a strategy of effective dielectric calculation is applied …