Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Power and Energy

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 3880

Full-Text Articles in Electrical and Computer Engineering

Design Of High Efficiency Doherty Power Amplifier, Kobi G. Kelly, Severin Pindell Jun 2024

Design Of High Efficiency Doherty Power Amplifier, Kobi G. Kelly, Severin Pindell

Electrical Engineering

The project includes design and fabrication of a high efficiency power amplifier for a student design competition held at International Microwave Symposium (IMS) 2023. Efficient power amplifiers are critical for base station communication requiring efficient use of available power. The final design optimizes power added efficiency (PAE) and linearity. The amplifier will operate at 2.45 GHz. Competitive PAE above 50%, and C/I above 30 dB is achieved by leveraging a Doherty class amplifier using accurate discrete CGH4006P transistor models to simulate an efficient and linear design. Unique design features include optimal transistor bias point selection and power split ratios between …


Applications Of Supercapacitors In Robotic Systems, Charles Davis, Zachary Giese, Joseph Gober, Samuel Grisham, Avery Mahan Apr 2024

Applications Of Supercapacitors In Robotic Systems, Charles Davis, Zachary Giese, Joseph Gober, Samuel Grisham, Avery Mahan

ATU Research Symposium

This project explores the utilization of a bespoke supercapacitor system to energize and propel a robot across various challenging courses. The custom supercapacitor setup serves as the primary power source, providing rapid charging capabilities and high energy density. The research investigates the integration of this innovative power solution into the robot's design, aiming to optimize its performance and endurance in competitive environments.


Hybrid Pv-Teg System, Anna-Marie Pesaresi, Paige Woolheater, Chance Eoff, Nicholas Colburn Apr 2024

Hybrid Pv-Teg System, Anna-Marie Pesaresi, Paige Woolheater, Chance Eoff, Nicholas Colburn

ATU Research Symposium

This research is focused on an innovative approach to improving the efficiency of a well- established renewable energy source. Solar cells are becoming more prominent as the power industry is shifting towards using more clean energy sources. Photovoltaic (PV) solar cells can only absorb a portion of the irradiance spectrum. The portion that is not absorbed raises the temperature of the system. The efficiency of PV cells drastically decreases as the temperature of the module rises and more energy is lost in the form of heat waste. Thermoelectric generator (TEG), when combined with PV cell, thrives off of the PV …


Rethinking Wind In Kentucky, Lawrence E. Holloway, Aron Patrick, Dan M. Ionel Apr 2024

Rethinking Wind In Kentucky, Lawrence E. Holloway, Aron Patrick, Dan M. Ionel

Power and Energy Institute of Kentucky Faculty Publications

Recent analyses and developments suggest that wind energy could play a role in Kentucky's future power generation mix. This recent change in outlook for Kentucky wind has been driven by three factors: (1) improved wind turbine technologies, (2) improved economics, and (3) recent analyses showing improved grid reliability due to wind's complementarity to solar power generation.


A New Method To Start Loaded Induction Motors, Omar El-Sayed Mohammed Youssef Mar 2024

A New Method To Start Loaded Induction Motors, Omar El-Sayed Mohammed Youssef

Journal of Engineering Research

Three-phase induction motors have a widespread use in industry, and starting of loaded induction motors is an important matter. However, there are few studies on motor starting using variable-frequency drives (VFDs). The existing control schemes, described by these studies, have disadvantages such as dependence on derived characteristics, adjustment of settings, design of controllers, or burden of calculations on the control processor. In this paper, a simple and effective control scheme of VFDs to start loaded motors is proposed. In this scheme, there is no dependence on any characteristic, adjustment of settings, controllers, and rotor speed sensor. By this scheme, the …


Allocation Of Phasor Measurement Units In The Wide-Area Measurement System, Samir Dawoud, Mohamed Elnemr, Alyaa Yehia Mar 2024

Allocation Of Phasor Measurement Units In The Wide-Area Measurement System, Samir Dawoud, Mohamed Elnemr, Alyaa Yehia

Journal of Engineering Research

WIDE Area in the power system which has been introduced to power system literature in the late 1980s. They are now commercially in power systems for purposes of monitoring, operation, and control. The wide area is a combination between the phasor measurement unit (PMU) and communication infrastructure (CI). In this paper, the location of the PMU and the CI can be optimized to involve system observability. There are a lot of methods to solve the optimal placement of PMU. The communication infrastructure is designed and implemented to collect the data from PMU and transfer data to the control center. In …


Optimization Of An Off-Grid Pv/Biogas Hybrid Energy System For Electrification: A Case Study In A Rural Area In Egypt, Ibrahim A. Elzahy, Ahmed Refaat, Samir Dawoud Mar 2024

Optimization Of An Off-Grid Pv/Biogas Hybrid Energy System For Electrification: A Case Study In A Rural Area In Egypt, Ibrahim A. Elzahy, Ahmed Refaat, Samir Dawoud

Journal of Engineering Research

The increasing demand for energy in remote or rural areas, coupled with the environmental benefits and cost-effectiveness of renewable energy sources, has led to a growing interest in off-grid energy systems. This paper proposes an optimized off-grid energy system to supply energy demand for a village and a desalination reverse osmosis water plant (RO) in Shalateen, Egypt, using a combination of photovoltaic (PV) and biomass technologies. To achieve minimizing Loss of Power Supply Probability (LPSP) and Total Net Present Cost (TNPC), two decision variables are optimized using the Harmony Search algorithm implemented in MATLAB. The reliability of a designed system …


Recent Advances In Solar Photo(Electro)Catalytic Nitrogen Fixation, Jun-Bo Ma, Sheng Lin, Zhiqun Lin, Lan Sun, Chang-Jian Lin Mar 2024

Recent Advances In Solar Photo(Electro)Catalytic Nitrogen Fixation, Jun-Bo Ma, Sheng Lin, Zhiqun Lin, Lan Sun, Chang-Jian Lin

Journal of Electrochemistry

Ammonia (NH3) is an essential chemical in modern society. It is currently produced in industry by the Haber-Bosch process using H2 and N2 as reactants in the presence of iron-based catalysts at high-temperature (400–600 oC) and extremely highpressure (20–40 MPa) conditions. However, its efficiency is limited to 10% to 15%. At the same time, a large amount of energy is consumed, and CO2 emission is inevitably. The development of a sustainable, clean, and environmentally friendly energy system represents a key strategy to address energy crisis and environmental pollution, ultimately aiming to achieve carbon neutrality. …


The Determination Of Pzc And Differential Capacitance Curve Of Platinum-Alkaline Polymer Electrolyte Interfaces, Chen-Xi Liu, Ze-Ping Zou, Mei-Xue Hu, Yu Ding, Yu Gu, Shuai Liu, Wen-Jing Nan, Yi-Chang Ma, Zhao-Bin Chen, Dong-Ping Zhan, Qiu-Gen Zhang, Lin Zhuang, Jia-Wei Yan, Bing-Wei Mao Mar 2024

The Determination Of Pzc And Differential Capacitance Curve Of Platinum-Alkaline Polymer Electrolyte Interfaces, Chen-Xi Liu, Ze-Ping Zou, Mei-Xue Hu, Yu Ding, Yu Gu, Shuai Liu, Wen-Jing Nan, Yi-Chang Ma, Zhao-Bin Chen, Dong-Ping Zhan, Qiu-Gen Zhang, Lin Zhuang, Jia-Wei Yan, Bing-Wei Mao

Journal of Electrochemistry

Alkaline polymer electrolyte (APE) is the core component of modern alkaline hydrogen and oxygen fuel cells, and its single ion conductor nature makes the "electrode/APE" interfaces different from the conventional "electrode/solution" interfaces in terms of ion distribution, electrical double layer structure and polarization behavior. Due to the complexity of the APE and the associated solid-solid interfaces, fundamental investigations are challenging and deeper understanding of the structures and properties of such interfaces is in the infant stage. In this work, we aim to investigate the double layer structure from the aspects of differential capacitance curve and potential of zero charge (PZC) …


Development Demand, Power Energy Consumption And Green And Low-Carbon Transition For Computing Power In China, Xiaohong Chen, Liaoying Cao, Jiaolong Chen, Jinghui Zhang, Wenzhi Cao, Yangjie Wang Mar 2024

Development Demand, Power Energy Consumption And Green And Low-Carbon Transition For Computing Power In China, Xiaohong Chen, Liaoying Cao, Jiaolong Chen, Jinghui Zhang, Wenzhi Cao, Yangjie Wang

Bulletin of Chinese Academy of Sciences (Chinese Version)

As a critical digital infrastructure, computing power has become the core productivity and a new engine driving economic growth in the digital economy. Nevertheless, the power-hungry nature of computing/data centers, representing the computing infrastructure, consumes a significant amount of electrical energy. Currently, China’s economy is transitioning from high-speed growth to high-quality development. It is imperative to study how to coordinate the development of computing power while ensuring its safety and achieving green and low-carbon goals. Based on an overview of the current status of computing power development, this study predicts the future demand for computing power in China, analyzes the …


Dynamic Model Of Ac-Ac Dual Active Bridge Converter Using The Extended Generalized Average Modeling Framework, Kartikeya Jayadurga Prasad Veeramraju, Jonathan W. Kimball Mar 2024

Dynamic Model Of Ac-Ac Dual Active Bridge Converter Using The Extended Generalized Average Modeling Framework, Kartikeya Jayadurga Prasad Veeramraju, Jonathan W. Kimball

Electrical and Computer Engineering Faculty Research & Creative Works

The ac-ac dual active bridge (DAB) converter is an advanced bidirectional two-port grid interface converter that facilitates active and reactive power flow control between two grids without a dc-link capacitor. This article presents a novel modeling approach for the ac-ac DAB converter using the extended generalized average modeling (EGAM) technique. Unlike the conventional generalized average modeling (GAM) framework, the ac-ac DAB converter's dynamic state variables, including the leakage inductor current and ac grid side LC filters, exhibit grid and switching frequency components, making the standard GAM framework unsuitable for dynamic modeling involving two distinct excitation frequencies. Furthermore, the 2-D GAM …


An Impedance-Source-Based Soft-Switched High Step-Up Dc-Dc Converter With An Active Clamp, Saeed Habibi, Ramin Rahimi, Mehdi Ferdowsi, Pourya Shamsi Mar 2024

An Impedance-Source-Based Soft-Switched High Step-Up Dc-Dc Converter With An Active Clamp, Saeed Habibi, Ramin Rahimi, Mehdi Ferdowsi, Pourya Shamsi

Electrical and Computer Engineering Faculty Research & Creative Works

This article proposes a high step-up dc-dc converter based on a trans-inverse impedance-source structure, in which the voltage gain of the converter is increased by using a lower number of turns ratio of the coupled inductors (CI) windings. The proposed converter achieves a very high voltage gain and a very low voltage stress on the switches. An active clamp is incorporated into the topology of the proposed converter, helping to absorb the energy of the leakage inductances of the CI, and to recycle that energy to the output of the converter to further increase the voltage gain. Furthermore, the active …


Improvements Of Hybrid Ac/Dc House Prototype, Arden Abude Mar 2024

Improvements Of Hybrid Ac/Dc House Prototype, Arden Abude

Electrical Engineering

This is an iteration from previous designs of the Hybrid AC/DC House with a systematic addition of a portable AC power supply unit. This iteration for the Hybrid AC/DC House is an innovation of independence for sustainable housing solutions. It will serve as an alternative for rural communities needing power to rely on self-sustainable microgrids rather than large-scale AC electric grids. The addition of a portable AC power supply would allow the microgrid to remove its reliance on AC power from the larger grid and would elevate the system to complete energy independence. The microgrid has DC power generated from …


Development Of A Mathematical Model Of Magnetic Field Distribution In Magnetic Conductors Of A Wide-Range Current Transformer, Abdurauf Safarov Feb 2024

Development Of A Mathematical Model Of Magnetic Field Distribution In Magnetic Conductors Of A Wide-Range Current Transformer, Abdurauf Safarov

Chemical Technology, Control and Management

The article is devoted to the analysis of the distribution of the magnetic field in the magnetic conductors of a wide-range current transformer for the development of a mathematical model that can be used as the basis for calculating its static characteristics and error. The design, replacement circuits and design model of a current transformer are given. The relations of magnetic induction and tension from the coordinate of the position of the primary winding are obtained. It is shown that the conversion range can be adjusted depending on the different positions of the bus with current, as a result of …


Automated Workflow For Redox Potentials And Acidity Constants Calculations From Machine Learning Molecular Dynamics, Feng Wang, Jun Cheng Feb 2024

Automated Workflow For Redox Potentials And Acidity Constants Calculations From Machine Learning Molecular Dynamics, Feng Wang, Jun Cheng

Journal of Electrochemistry

Redox potentials and acidity constants are key properties for evaluating the performance of energy materials. To achieve computational design of new generation of energy materials with higher performances, computing redox potentials and acidity constants with computational chemistry have attracted lots of attention. However, many works are done by using implicit solvation models, which is difficult to be applied to complex solvation environments due to hard parameterization. Recently, ab initio molecular dynamics (AIMD) has been applied to investigate real electrolytes with complex solvation. Furthermore, AIMD based free energy calculation methods have been established to calculate these physical chemical properties accurately. However, …


Joint Time-Frequency Analysis: Taking Charge Penetration Depth And Current Spatial Distribution In The Single Pore As An Example, Nan Wang, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jiu-Jun Zhang Feb 2024

Joint Time-Frequency Analysis: Taking Charge Penetration Depth And Current Spatial Distribution In The Single Pore As An Example, Nan Wang, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jiu-Jun Zhang

Journal of Electrochemistry

In recent years, joint time-frequency analysis has once again become a research hotspot. Supercapacitors have high power density and long service life, however, in order to balance between power density and energy density, two key factors need to be considered: (i) the specific surface area of the porous matrix; (ii) the electrolyte accessibility to the intra-pore space of porous carbon matrix. Electrochemical impedance spectra are extensively used to investigate charge penetration ratio and charge storage mechanism in the porous electrode for capacitance energy storage. Furthermore, similar results could be obtained by different methods such as stable-state analysis in the frequency …


Confirmation Of Anomalous-Heat Report, Steven B. Krivit, Melvin H. Miles Feb 2024

Confirmation Of Anomalous-Heat Report, Steven B. Krivit, Melvin H. Miles

Journal of Electrochemistry

This study identifies, for the first time, critical calculation errors made by Nathan Lewis and his co-authors, in their study presented on May 1, 1989, at the American Physical Society meeting in Baltimore, Maryland. Lewis et al. analysed calorimetrically measured heat results in nine experiments reported by Martin Fleischmann and his co-authors. According to the Lewis et al. analysis, each of the experiments, where calculated for no recombination, showed anomalous power losses. When we used the same raw data, our corrected calculations indicate that each experiment showed anomalous power gains. As such, these data suggest the possibility of a new, …


Analysis And Recommendations For Energy Conservation And Carbon Emission Reduction In Industry Boosted By Digital Energy Management Systems, Duanyang Geng, Tong Xu, Qinghua Zhu, Steve Evans Feb 2024

Analysis And Recommendations For Energy Conservation And Carbon Emission Reduction In Industry Boosted By Digital Energy Management Systems, Duanyang Geng, Tong Xu, Qinghua Zhu, Steve Evans

Bulletin of Chinese Academy of Sciences (Chinese Version)

Energy consumption during production processes in the industry is a main source of carbon dioxide emissions. Therefore, for China’s dual-carbon goals, industrial enterprises need to focus on reducing energy waste to achieve energy-efficient production, thereby effectively reducing carbon emissions in industrial production. In recent years, with the continuous development and popularization of digital technology, digital energy management systems have played a crucial role in energy saving by visualizing invisible energy in the industry. In this context, this study first analyses the current status of digital energy management system applications in the UK, the US, Germany, and Sweden, summarizes their characteristics …


Path And Strategy Of Pollution And Carbon Reduction By Digitization In Electric Power Enterprises, Xiaohong Chen, Runcheng Tang, Dongbin Hu, Xuesong Xu, Xiangbo Tang, Guodong Yi, Weiwei Zhang Feb 2024

Path And Strategy Of Pollution And Carbon Reduction By Digitization In Electric Power Enterprises, Xiaohong Chen, Runcheng Tang, Dongbin Hu, Xuesong Xu, Xiangbo Tang, Guodong Yi, Weiwei Zhang

Bulletin of Chinese Academy of Sciences (Chinese Version)

With the extensive application and innovation of digital technology in the energy sector, digital technology has become increasingly crucial for the power industry to achieve the goal of reducing pollution and carbon emissions. How digital technology enables electric power enterprises to achieve this goal has attracted much attention. Firstly, the study analyzes the progress of digital technology applications in pollution reduction and carbon reduction in electric power enterprises. Then, it identifies the existing problems in the current application of digital technology in the power industry for reducing pollution and carbon emissions. Finally, it explores the potential ways and approaches of …


A Study On The Incentives And Barriers For The Adoption Of Electric Vehicles In South Alabama, Marianne Loes, Daniela Wolter Ferreira Touma, Jennifer C. Zoghby Feb 2024

A Study On The Incentives And Barriers For The Adoption Of Electric Vehicles In South Alabama, Marianne Loes, Daniela Wolter Ferreira Touma, Jennifer C. Zoghby

Association of Marketing Theory and Practice Proceedings 2024

ABSTRACT

Through a series of public policy incentives and consumer demand, more electric vehicles are being sold nationwide than ever before. Although electric vehicles (EVs) are being adopted nationwide by many consumers in recent years, car-buyers across South Alabama have not followed the trend. This research considers different stakeholders in the complex consumer buying process of car purchases, and it uses the extant technology adoption models to assess the public policy incentives, as well as statewide roadblocks, to EV adoption.


Fair Fault-Tolerant Approach For Access Point Failures In Networked Control System Greenhouses, Mohammed Ali Yaslam Ba Humaish Feb 2024

Fair Fault-Tolerant Approach For Access Point Failures In Networked Control System Greenhouses, Mohammed Ali Yaslam Ba Humaish

Theses and Dissertations

Greenhouse Networked Control Systems (NCS) are popular applications in modern agriculture due to their ability to monitor and control various environmental factors that can affect crop growth and quality. However, designing and operating a greenhouse in the context of NCS could be challenging due to the need for highly available and cost-efficient systems. This thesis presents a design methodology for greenhouse NCS that addresses these challenges, offering a framework to optimize crop productivity, minimize costs, and improve system availability and reliability. It contributes several innovations to the field of greenhouse NCS design. For example, it recommends using the 2.4GHz frequency …


The Top Ten Scientific Questions In Electrochemistry, Chinese Society Of Electrochemistry Jan 2024

The Top Ten Scientific Questions In Electrochemistry, Chinese Society Of Electrochemistry

Journal of Electrochemistry

No abstract provided.


Rational Design Of Heterostructured Nanomaterials For Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics In Alkaline Media, Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma Jan 2024

Rational Design Of Heterostructured Nanomaterials For Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics In Alkaline Media, Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma

Journal of Electrochemistry

Owing to the merits of high energy density, as well as clean and sustainable properties, hydrogen has been deemed to be a prominent alternative energy to traditional fossil fuels. Electrocatalytic hydrogen evolution reaction (HER) has been considered to be mostly promising for achieving green hydrogen production, and has been widely studied in acidic and alkaline solutions. In particular, HER in alkaline media has high potential to achieve large-scale hydrogen production because of the increased durability of electrode materials. However, for the currently most prominent catalyst Pt, its HER kinetics in an alkaline solution is generally 2–3 orders lower than that …


Stability Of A Solid Oxide Cell Stack Under Direct Internal-Reforming Of Hydrogen-Blended Methane, Ya-Fei Tang, An-Qi Wu, Bei-Bei Han, Hua Liu, Shan-Jun Bao, Wang-Lin Lin, Ming Chen, Wan-Bing Guan, Subhash C. Singhal Jan 2024

Stability Of A Solid Oxide Cell Stack Under Direct Internal-Reforming Of Hydrogen-Blended Methane, Ya-Fei Tang, An-Qi Wu, Bei-Bei Han, Hua Liu, Shan-Jun Bao, Wang-Lin Lin, Ming Chen, Wan-Bing Guan, Subhash C. Singhal

Journal of Electrochemistry

In this work, the long-term stability and degradation mechanism of a direct internal-reforming solid oxide fuel cell stack (IR-SOFC stack) using hydrogen-blended methane steam reforming were investigated. An overall degradation rate of 2.3%·kh–1 was found after the stack was operated for 3000 hours, indicating a good long-term stability. However, the voltages of the two cells in the stack were increased at the rates of 3.38 mV·kh–1 and 3.78 mV·kh–1, while the area specific resistances of the three metal interconnects in the stack were increased to 0.276 Ω·cm2, 0.254 Ω·cm2 and 0.249 Ω·cm2 …


Support The Next Generation By Sponsoring The 2024 Windstorm Challenge!, Advanced Structures And Composites Center Jan 2024

Support The Next Generation By Sponsoring The 2024 Windstorm Challenge!, Advanced Structures And Composites Center

General University of Maine Publications

The Windstorm Challenge is a unique opportunity for middle and high school students to get hands-on engineering practice at the Advanced Structures and Composites Center (ASCC). Organized by the same team that brings you AFloat, the Windstorm Challenge seeks to educate the next generation of floating offshore wind innovators.


Market Analysis And Bidding Strategy Of Hybrid Renewable Energy Systems Considering Emissions, Fatma Elzahraa, Mohamed Elnemr, Samir Dawoud Jan 2024

Market Analysis And Bidding Strategy Of Hybrid Renewable Energy Systems Considering Emissions, Fatma Elzahraa, Mohamed Elnemr, Samir Dawoud

Journal of Engineering Research

The competition in the electricity markets makes it difficult to choose a suitable strategy for maximizing profit while reducing harmful emissions. To have an adequate energy price for consumers while minimizing the harmful emissions to the atmosphere and maximizing profits of all participants in the electricity market needs an aggressive bidding strategy. Developing these bidding strategies with the integration of renewable energy (RE) in the electricity market became important. This research studies various bidding strategies for maximizing profits in the deregulated energy market since participants are keen on developing bidding strategies considering emissions. These bidding strategies will consider the integration …


Energy Efficiency In Additive Manufacturing: Condensed Review, Ismail Fidan, Vivekanand Naikwadi, Suhas Alkunte, Roshan Mishra, Khalid Tantawi Jan 2024

Energy Efficiency In Additive Manufacturing: Condensed Review, Ismail Fidan, Vivekanand Naikwadi, Suhas Alkunte, Roshan Mishra, Khalid Tantawi

Engineering Technology Faculty Publications

Today, it is significant that the use of additive manufacturing (AM) has growing in almost every aspect of the daily life. A high number of sectors are adapting and implementing this revolutionary production technology in their domain to increase production volumes, reduce the cost of production, fabricate light weight and complex parts in a short period of time, and respond to the manufacturing needs of customers. It is clear that the AM technologies consume energy to complete the production tasks of each part. Therefore, it is imperative to know the impact of energy efficiency in order to economically and properly …


Designing High-Performance Identity-Based Quantum Signature Protocol With Strong Security, Sunil Prajapat, Pankaj Kumar, Sandeep Kumar, Ashok Kumar Das, Sachin Shetty, M. Shamim Hossain Jan 2024

Designing High-Performance Identity-Based Quantum Signature Protocol With Strong Security, Sunil Prajapat, Pankaj Kumar, Sandeep Kumar, Ashok Kumar Das, Sachin Shetty, M. Shamim Hossain

VMASC Publications

Due to the rapid advancement of quantum computers, there has been a furious race for quantum technologies in academia and industry. Quantum cryptography is an important tool for achieving security services during quantum communication. Designated verifier signature, a variant of quantum cryptography, is very useful in applications like the Internet of Things (IoT) and auctions. An identity-based quantum-designated verifier signature (QDVS) scheme is suggested in this work. Our protocol features security attributes like eavesdropping, non-repudiation, designated verification, and hiding sources attacks. Additionally, it is protected from attacks on forgery, inter-resending, and impersonation. The proposed scheme benefits from the traditional designated …


Nitrogen-Doped Graphite Felt On The Performance Of Aqueous Quinone-Based Redox Flow Batteries, Heng Zhang, Li-Xing Xia, Shan Jiang, Fu-Zhi Wang, Zhan-Ao Tan Dec 2023

Nitrogen-Doped Graphite Felt On The Performance Of Aqueous Quinone-Based Redox Flow Batteries, Heng Zhang, Li-Xing Xia, Shan Jiang, Fu-Zhi Wang, Zhan-Ao Tan

Journal of Electrochemistry

Modification of electrode is vitally important for achieving high energy efficiency in aqueous quinone-based redox flow batteries (AQRFBs). The modification of graphite felt (GF) was carried out by means of urea hydrothermal reaction, and simultaneously, the effects of hydrothermal reaction time on the functional groups and surface structure of nitrogen-doped graphite felt were studied. The surface morphology and defect, element content and surface chemical state of the modified electrode were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) test, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The electrochemical performance of the modified electrodes was evaluated by cyclic voltammetry, electrochemical impedance …


An In-Situ Raman Spectroscopic Study On The Interfacial Process Of Carbonate-Based Electrolyte On Nanostructured Silver Electrode, Yu Gu, Yuan-Fei Hu, Wei-Wei Wang, En-Ming You, Shuai Tang, Jian-Jia Su, Jun Yi, Jia-Wei Yan, Zhong-Qun Tian, Bing-Wei Mao Dec 2023

An In-Situ Raman Spectroscopic Study On The Interfacial Process Of Carbonate-Based Electrolyte On Nanostructured Silver Electrode, Yu Gu, Yuan-Fei Hu, Wei-Wei Wang, En-Ming You, Shuai Tang, Jian-Jia Su, Jun Yi, Jia-Wei Yan, Zhong-Qun Tian, Bing-Wei Mao

Journal of Electrochemistry

The solid-electrolyte interphase (SEI) plays a key role in anodes for rechargeable lithium-based battery technologies. However, a thorough understanding in the mechanisms of SEI formation and evolution remains a major challenge, hindering the rapid development and wide applications of Li-based batteries. Here, we devise a borrowing surface-enhanced Raman scattering (SERS) activity strategy by utilizing a size optimized Ag nanosubstrate to in-situ monitor the formation and evolution of SEI, as well as its structure and chemistry in an ethylene carbonate-based electrolyte. To ensure a reliable in-situ SERS investigation, we designed a strict air-tight Raman cell with a three-electrode configuration. Based on …