Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 121 - 150 of 1380

Full-Text Articles in Quantum Physics

Perspectives On Determinism In Quantum Mechanics: Born, Bohm, And The “Quantal Newtonian” Laws, Viraht Sahni Dec 2022

Perspectives On Determinism In Quantum Mechanics: Born, Bohm, And The “Quantal Newtonian” Laws, Viraht Sahni

Publications and Research

Quantum mechanics has a deterministic Schrödinger equation for the wave function. The Göttingen–Copenhagen statistical interpretation is based on the Born Rule that interprets the wave function as a “probability amplitude.” A precept of this interpretation is the lack of determinism in quantum mechanics. The Bohm interpretation is that the wave function is a source of a field experienced by the electrons, thereby attributing determinism to quantum theory. In this paper, we present a new perspective on such determinism. The ideas are based on the equations of motion or “Quantal Newtonian” Laws obeyed by each electron. These Laws, derived from …


Golay Codes And Quantum Contextuality, Mordecai Waegell, P. K. Aravind Dec 2022

Golay Codes And Quantum Contextuality, Mordecai Waegell, P. K. Aravind

Mathematics, Physics, and Computer Science Faculty Articles and Research

It is shown that the codewords of the binary and ternary Golay codes can be converted into rays in RP23 and RP11 that provide proofs of the Kochen-Specker theorem in real state spaces of dimensions 24 and 12, respectively. Some implications of these results are discussed.


Fourier Acceleration In The Linear Sigma Model, Cameron Cianci Dec 2022

Fourier Acceleration In The Linear Sigma Model, Cameron Cianci

Honors Scholar Theses

The linear sigma model is a low energy effective model of Quantum Chromodynamics. This model mimics the breaking of chiral symmetry both spontaneously and explicitly through the quark condensate and pion mass matrix respectively. Fourier acceleration is a method that can be implemented in the Hybrid Monte-Carlo algorithm which decreases autocorrelations due to critical slowing down through tuning the mass parameters in the HMC algorithm. Fourier acceleration is applied to the linear sigma model with a novel mass estimation procedure, by assuming the modes behave approximately like simple harmonic oscillators. The masses are chosen by sampling the expectation values of …


Observation Of Novel Phases Of Quantum Matter Beyond Topological Insulator, Sabin Regmi Dec 2022

Observation Of Novel Phases Of Quantum Matter Beyond Topological Insulator, Sabin Regmi

Electronic Theses and Dissertations, 2020-

Because of the unique electronic properties, intriguing novel phenomena, and potentiality in quantum device applications, the quantum materials with non-trivial band structures have enticed a bulk of research works over the last two decades. The experimental discovery of the three-dimensional topological insulators (TIs) - bulk insulators with surface conduction via spin-polarized electrons - kicked off the flurry of research interests towards such materials, which resulted in the experimental discovery of new topological phases of matter beyond TIs. The topological semimetallic phase in Dirac, Weyl, and nodal-line semimetals is an example, where the classification depends on the dimensionality, degeneracy, and symmetry …


Does Science Need Intersubjectivity? The Problem Of Confirmation In Orthodox Interpretations Of Quantum Mechanics, Emily Adlam Dec 2022

Does Science Need Intersubjectivity? The Problem Of Confirmation In Orthodox Interpretations Of Quantum Mechanics, Emily Adlam

Mathematics, Physics, and Computer Science Faculty Articles and Research

Any successful interpretation of quantum mechanics must explain how our empirical evidence allows us to come to know about quantum mechanics. In this article, we argue that this vital criterion is not met by the class of ‘orthodox interpretations,’ which includes QBism, neo-Copenhagen interpretations, and some versions of relational quantum mechanics. We demonstrate that intersubjectivity fails in radical ways in these approaches, and we explain why intersubjectivity matters for empirical confirmation. We take a detailed look at the way in which belief-updating might work in the kind of universe postulated by an orthodox interpretation, and argue that observers in such …


Black Holes, Disk Structures, And Cosmological Implications In E-Dimensional Space, Subhash Kak, Menas C. Kafatos Dec 2022

Black Holes, Disk Structures, And Cosmological Implications In E-Dimensional Space, Subhash Kak, Menas C. Kafatos

Mathematics, Physics, and Computer Science Faculty Articles and Research

We examine a modern view of the universe that builds on achieved successes of quantum mechanics, general relativity, and information theory, bringing them together in integrated approach that is founded on the realization that space itself is e-dimensional. The global and local implications of noninteger dimensionality are examined, and how it may have increased from the value of zero to its current value is investigated. We find surprising aspects that tie to structures in the universe, black holes, and the role of observations.


What Is Nonclassical About Uncertainty Relations?, Lorenzo Catani, Matthew S. Leifer, Giovanni Scala, David Schmid, Robert W. Spekkens Dec 2022

What Is Nonclassical About Uncertainty Relations?, Lorenzo Catani, Matthew S. Leifer, Giovanni Scala, David Schmid, Robert W. Spekkens

Mathematics, Physics, and Computer Science Faculty Articles and Research

Uncertainty relations express limits on the extent to which the outcomes of distinct measurements on a single state can be made jointly predictable. The existence of nontrivial uncertainty relations in quantum theory is generally considered to be a way in which it entails a departure from the classical worldview. However, this perspective is undermined by the fact that there exist operational theories which exhibit nontrivial uncertainty relations but which are consistent with the classical worldview insofar as they admit of a generalized-noncontextual ontological model. This prompts the question of what aspects of uncertainty relations, if any, cannot be realized in …


Two-Step Single Qubit Gates For Superconducting Qubits, Edward Takyi Dec 2022

Two-Step Single Qubit Gates For Superconducting Qubits, Edward Takyi

Open Access Theses & Dissertations

Why quantum information processing? Contemporary manipulation and transmission of information is executed through physical machines (computers, routers, scanners, etc.) in which Classical Mechanics is used to describe the embodiment and transformation of information. However, the physical theory of the world is not Classical Mechanics. And so, there is no reason to suppose that machines following the laws of Classical Mechanics would have the same computational power like quantum machines. Quantum computers would break the rules of classical computers and they would be able solve problems that are intractable on conventional supercomputers.

In order to fabricate quantum computers and make significant …


The Impact Of A Nuclear Disturbance On A Space-Based Quantum Network, Alexander Miloshevsky Dec 2022

The Impact Of A Nuclear Disturbance On A Space-Based Quantum Network, Alexander Miloshevsky

Doctoral Dissertations

Quantum communications tap into the potential of quantum mechanics to go beyond the limitations of classical communications. Currently, the greatest challenge facing quantum networks is the limited transmission range of encoded quantum information. Space-based quantum networks offer a means to overcome this limitation, however the performance of such a network operating in harsh conditions is unknown. This dissertation analyzes the capabilities of a space-based quantum network operating in a nuclear disturbed environment. First, performance during normal operating conditions is presented using Gaussian beam modeling and atmospheric modeling to establish a baseline to compare against a perturbed environment. Then, the DEfense …


Gate-Controlled Quantum Dots In Two-Dimensional Tungsten Diselenide And One-Dimensional Tellurium Nanowires, Shiva Davari Dolatabadi Dec 2022

Gate-Controlled Quantum Dots In Two-Dimensional Tungsten Diselenide And One-Dimensional Tellurium Nanowires, Shiva Davari Dolatabadi

Graduate Theses and Dissertations

This work focuses on the investigation of gate-defined quantum dots in two-dimensional transition metal dichalcogenide tungsten diselenide (WSe2) as a means to unravel mesoscopic physical phenomena such as valley-contrasting physics in WSe2 flakes and its potential application as qubit, as well as realizing gate-controlled quantum dots based on elementaltellurium nanostructures which may unlock the topological nature of the host material carriers such as Weyl states in tellurium nanowires.The fabrication and characterization of gate-defined hole quantum dots in monolayer and bilayer WSe2 are reported. The gate electrodes in the device design are located above and below the WSe2 nanoflakes to accumulate …


Display Applications For Grating Angle Magnification Accelerated Angular Scanners, Daniel Jesus Valdes Dec 2022

Display Applications For Grating Angle Magnification Accelerated Angular Scanners, Daniel Jesus Valdes

UNLV Theses, Dissertations, Professional Papers, and Capstones

This work includes experimental demonstrations of grating angle magnification accelerated optical beam scanners. Diffraction grating scanners governed by the grating equation can have scan speed advantages over the flat mirror bound by Snell's law of reflection. Scan speed enhancement of 750% was achieved with a 635nm laser and 1800 groove/mm diffraction grating configuration thanks to the grating angle magnification. A three-color diffraction grating scanner shows identical results at larger scan angles. Tunable acceleration speed is a feature enabled by the diffraction grating scanner to operate in a high-speed scanning region and/or high-resolution scanning region depending on the demands of the …


High Fidelity Universal Gates Performed On A Continuously-Decoupled Coherence Enhanced Transmon Qubit, Michael Senatore Nov 2022

High Fidelity Universal Gates Performed On A Continuously-Decoupled Coherence Enhanced Transmon Qubit, Michael Senatore

Dissertations - ALL

Decoherence is the primary limiting factor for the utility of modern qubits and qubit networks; most chiefly, pure dephasing which limits the operational time any gate-sequence can produce a high-fidelity result. In this dissertation, I present the results of my experiment, performing fast, high fidelity, universal single-qubit gates, on a qubit which has been decoupled from pure dephasing resulting from environmental noise. This technique can expand operational ranges of qubits–such as allowing the high-coherence operation of a flux-tunable qubit far away from its flux-insensitive sweet-spot; broadening our selection of viable qubits by making otherwise low-coherence qubits operable with high coherence, …


Non-Inertial Quantum Clock Frames Lead To Non-Hermitian Dynamics, Ismael L. Paiva, Amit Te'eni, Bar Y. Peled, Eliahu Cohen, Yakir Aharonov Nov 2022

Non-Inertial Quantum Clock Frames Lead To Non-Hermitian Dynamics, Ismael L. Paiva, Amit Te'eni, Bar Y. Peled, Eliahu Cohen, Yakir Aharonov

Mathematics, Physics, and Computer Science Faculty Articles and Research

The operational approach to time is a cornerstone of relativistic theories, as evidenced by the notion of proper time. In standard quantum mechanics, however, time is an external parameter. Recently, many attempts have been made to extend the notion of proper time to quantum mechanics within a relational framework. Here, we use similar ideas combined with the relativistic mass-energy equivalence to study an accelerating massive quantum particle with an internal clock system. We show that the ensuing evolution from the perspective of the particle’s internal clock is non-Hermitian. This result does not rely on specific implementations of the clock. As …


Compilation Optimizations To Enhance Resilience Of Big Data Programs And Quantum Processors, Travis D. Lecompte Nov 2022

Compilation Optimizations To Enhance Resilience Of Big Data Programs And Quantum Processors, Travis D. Lecompte

LSU Doctoral Dissertations

Modern computers can experience a variety of transient errors due to the surrounding environment, known as soft faults. Although the frequency of these faults is low enough to not be noticeable on personal computers, they become a considerable concern during large-scale distributed computations or systems in more vulnerable environments like satellites. These faults occur as a bit flip of some value in a register, operation, or memory during execution. They surface as either program crashes, hangs, or silent data corruption (SDC), each of which can waste time, money, and resources. Hardware methods, such as shielding or error correcting memory (ECM), …


Symmetry Breaking Effects In Low-Dimensional Quantum Systems, Ke Wang Oct 2022

Symmetry Breaking Effects In Low-Dimensional Quantum Systems, Ke Wang

Doctoral Dissertations

Quantum criticality in low-dimensional quantum systems is known to host exotic behaviors. In quantum one-dimension (1D), the emerging conformal group contains infinite generators, and conformal techniques, e.g., operator product expansion, give accurate and universal descriptions of underlying systems. In quantum two-dimension (2D), the electronic interaction causes singular corrections to Fermi-liquids characteristics. Meanwhile, the Dirac fermions in topological 2D materials can greatly enrich emerging phenomena. In this thesis, we study the symmetry-breaking effects of low-dimensional quantum criticality. In 1D, we consider two cases: time-reversal symmetry (TRS) breaking in the Majorana conformal field theory (CFT) and the absence of conformal symmetry in …


Reservoir Engineering Of Multi-Photon States In Circuit Quantum Electrodynamics, Jeffrey M. Gertler Oct 2022

Reservoir Engineering Of Multi-Photon States In Circuit Quantum Electrodynamics, Jeffrey M. Gertler

Doctoral Dissertations

The field of experimental quantum information has made significant progress towards useful computation but has been handicapped by the dissipative nature of physical qubits. Except for unwieldy and unrealized topological qubits, all quantum information systems experience natural dissipation, which limits the time scale for useful computation. However, this same dissipation, which induces errors requiring quantum error correction (QEC), can be used as a resource to perform a variety of important and unrealized tasks. In this thesis I discuss research into three uses of dissipation: manifold stabilization, state transfer, and QEC. With reservoir engineering, these tasks can be addressed in an …


Anomalous Transport, Quasiperiodicity, And Measurement Induced Phase Transitions, Utkarsh Agrawal Oct 2022

Anomalous Transport, Quasiperiodicity, And Measurement Induced Phase Transitions, Utkarsh Agrawal

Doctoral Dissertations

With the advent of the noisy-intermediate scale quantum (NISQ) era quantum computers are increasingly becoming a reality of the near future. Though universal computation still seems daunting, a great part of the excitement is about using quantum simulators to solve fundamental problems in fields ranging from quantum gravity to quantum many-body systems. This so-called second quantum revolution rests on two pillars. First, the ability to have precise control over experimental degrees of freedom is crucial for the realization of NISQ devices. Significant progress in the control and manipulation of qubits, atoms, and ions, as well as their interactions, has not …


Two Roads To Retrocausality, Emily Adlam Oct 2022

Two Roads To Retrocausality, Emily Adlam

Mathematics, Physics, and Computer Science Faculty Articles and Research

In recent years the quantum foundations community has seen increasing interest in the possibility of using retrocausality as a route to rejecting the conclusions of Bell’s theorem and restoring locality to quantum physics. On the other hand, it has also been argued that accepting nonlocality leads to a form of retrocausality. In this article we seek to elucidate the relationship between retrocausality and locality. We begin by providing a brief schema of the various ways in which violations of Bell’s inequalities might lead us to consider some form of retrocausality. We then consider some possible motivations for using retrocausality to …


Tabletop Experiments For Quantum Gravity Are Also Tests Of The Interpretation Of Quantum Mechanics, Emily Adlam Oct 2022

Tabletop Experiments For Quantum Gravity Are Also Tests Of The Interpretation Of Quantum Mechanics, Emily Adlam

Mathematics, Physics, and Computer Science Faculty Articles and Research

Recently there has been a great deal of interest in tabletop experiments intended to exhibit the quantum nature of gravity by demonstrating that it can induce entanglement. In order to evaluate these experiments, we must determine if there is any interesting class of possibilities that will be convincingly ruled out if it turns out that gravity can indeed induce entanglement. In particular, since one argument for the significance of these experiments rests on the claim that they demonstrate the existence of superpositions of spacetimes, it is important to keep in mind that different interpretations of quantum mechanics may make different …


Characterization Of Superconducting Hardware For Implementing Quantum Stabilizers, Kenneth Richard Dodge Sep 2022

Characterization Of Superconducting Hardware For Implementing Quantum Stabilizers, Kenneth Richard Dodge

Dissertations - ALL

Superconducting qubits are one of the leading approaches being investigated for building a scalable quantum computer. In the presence of external noise and perturbations plus local microscopic fluctuations and dissipation in the qubit environment, arbitrary quantum states will decohere, leading to bit-flip and phase-flip errors of the qubit. In order to build a fault-tolerant quantum computer that can preserve and process quantum information in the presence of noise and dissipation, one must implement some form of quantum error correction. Stabilizer operations are at the heart of quantum error correction and are typically implemented in software-controlled entangling gates and measurements of …


Classification Of Pixel Tracks To Improve Track Reconstruction From Proton-Proton Collisions, Kebur Fantahun, Jobin Joseph, Halle Purdom, Nibhrat Lohia Sep 2022

Classification Of Pixel Tracks To Improve Track Reconstruction From Proton-Proton Collisions, Kebur Fantahun, Jobin Joseph, Halle Purdom, Nibhrat Lohia

SMU Data Science Review

In this paper, machine learning techniques are used to reconstruct particle collision pathways. CERN (Conseil européen pour la recherche nucléaire) uses a massive underground particle collider, called the Large Hadron Collider or LHC, to produce particle collisions at extremely high speeds. There are several layers of detectors in the collider that track the pathways of particles as they collide. The data produced from collisions contains an extraneous amount of background noise, i.e., decays from known particle collisions produce fake signal. Particularly, in the first layer of the detector, the pixel tracker, there is an overwhelming amount of background noise that …


Watching The Clocks: Interpreting The Page-Wootters Formalism And The Internal Quantum Reference Frame Programme, Emily Adlam Sep 2022

Watching The Clocks: Interpreting The Page-Wootters Formalism And The Internal Quantum Reference Frame Programme, Emily Adlam

Mathematics, Physics, and Computer Science Faculty Articles and Research

We discuss some difficulties that arise in attempting to interpret the Page–Wootters and Internal Quantum Reference Frames formalisms, then use a ‘final measurement’ approach to demonstrate that there is a workable single-world realist interpretation for these formalisms. We note that it is necessary to adopt some interpretation before we can determine if the ‘reference frames’ invoked in these approaches are operationally meaningful, and we argue that without a clear operational interpretation, such reference frames might not be suitable to define an equivalence principle. We argue that the notion of superposition should take into account the way in which an instantaneous …


Methods For Bioconjugation Of Biochemical Sensors Based On Metallic Nanoparticles, Jacob Rolin Sep 2022

Methods For Bioconjugation Of Biochemical Sensors Based On Metallic Nanoparticles, Jacob Rolin

Summer Community of Scholars Posters (RCEU and HCR Combined Programs)

No abstract provided.


Control Of Nonlinear Properties Of Van Der Waals Materials, Rezlind Bushati Sep 2022

Control Of Nonlinear Properties Of Van Der Waals Materials, Rezlind Bushati

Dissertations, Theses, and Capstone Projects

Van der Waals materials are a broad class of materials that exhibit unique optoelectronic properties. They provide a rich playground for which they can be integrated into current on-chip devices due to their nanometer-scale size, and be utilized for studying fundamental physics. Strong coupling of emitters to microcavities provides many opportunities for new exotic physics through the formation of hybrid quasi-particles exciton-polaritons. This thesis
focuses on exploring and enhancing nonlinearity of van der Waals materials through strongly coupling to microcavities. By taking advantage of the stacking order of TMDs, we show intense second-harmonic generation from bulk, centrosymmetric TMD systems. In …


Wideband And Relativistic Superradiance In Astrophysics, Christopher M. Wyenberg Aug 2022

Wideband And Relativistic Superradiance In Astrophysics, Christopher M. Wyenberg

Electronic Thesis and Dissertation Repository

In the quantum phenomenon of superradiance (SR) a population of inverted particles evolves, through its interaction with the quantized vacuum radiation field, into a highly entangled state capable of generating much greater radiative emission than predicted by the independent spontaneous decay of its constituent particles. The phenomenon has recently been applied to transient astrophysical processes but has thus far been restricted to particles sharing a common velocity. This thesis researches the effects of astrophysical velocity distributions upon SR, which are distinct from conventional regimes of the quantum optics literature in that they may possess extremely wide bandwidths, turbulent statistical properties, …


Magnetic Skyrmions Unwrapped, Alexey Kovalev Aug 2022

Magnetic Skyrmions Unwrapped, Alexey Kovalev

Alexey Kovalev Papers

Experiments with chiral magnets may hold the key to a better understanding of fundamental aspects of transformations between different skyrmionic states, necessary for magnetic memory and logic applications to become a reality.

With the aim of developing computing devices that operate with low power dissipation, scientists have been pursuing the idea of encoding information in magnetic states. Specifically, skyrmions, which can be thought of as whirl-like states of magnetic moments, are promising candidates for this purpose. The advantage of skyrmions lies in their topological protection, a property implying that only a ‘global’ system modification can erase a skyrmion. Realizations of …


The 'Quantal Newtonian' First Law: A Complementary Perspective To The Stationary-State Quantum Theory Of Electrons, Viraht Sahni Aug 2022

The 'Quantal Newtonian' First Law: A Complementary Perspective To The Stationary-State Quantum Theory Of Electrons, Viraht Sahni

Publications and Research

A complementary perspective to the Göttingen-Copenhagen interpretation of stationary-state quantum theory of electrons in an electromagnetic field is described. The perspective, derived from Schrödinger-Pauli theory, is that of the individual electron via its equation of motion or ‘Quantal Newtonian’ First Law. The Law is in terms of ‘classical’ fields experienced by each electron: the sum of the external and internal fields vanishes. The external field is a sum of the electrostatic and Lorentz fields. The internal field is a sum of fields’ representative of Pauli and Coulomb correlations; kinetic effects; electron density; and internal magnetic component. The energy is obtained …


Characterizing The Single-Photon State: Quantum Physics Experiments With Single-Photon Sensitivity, Sheldon Lee Field Aug 2022

Characterizing The Single-Photon State: Quantum Physics Experiments With Single-Photon Sensitivity, Sheldon Lee Field

University Honors Theses

Coincidence-counting and spontaneous parametric downconversion are central to introductory quantum mechanical experimentation but have remained largely out of reach of undergraduate physics instructors. This thesis summarizes the theory behind light polarization, spontaneous parametric downconversion, birefringent refractive indices, and an affordable self-contained photon coincidence counting unit (CCU). A method for implementing a CCU to demonstrate downconversion is presented, and empirical results are provided.


Overcoming Atmospheric Effects In Quantum Cryptography, Brian Joseph Rollick Aug 2022

Overcoming Atmospheric Effects In Quantum Cryptography, Brian Joseph Rollick

Doctoral Dissertations

Quantum Computers will have the potential to greatly assist us in problems such as searching, optimization and even drug discovery. Unfortunately, among these newfound capabilities is one which allows one to break RSA encryption in orders of magnitude less time. One promising countermeasure to secure our communication today and in the future is the one time pad, although it is very difficult to generate and distribute. Quantum Key Distribution offers a practical method for two authenticated parties to generate a key. Whereby the parties, Alice and Bob, share quantum states and use physical laws to place an upper bound on …


Quantum Computational Simulations For Condensed Matter Systems, Trevor Alan Keen Aug 2022

Quantum Computational Simulations For Condensed Matter Systems, Trevor Alan Keen

Doctoral Dissertations

In condensed matter physics, and especially in the study of strongly correlated electron systems, numerical simulation techniques are crucial to determine the properties of the system including interesting phases of matter that arise from electron-electron interactions. Many of these interesting phases of matter, including but not limited to Mott-insulating materials and possibly high-temperature superconducting systems, can be modeled by the Hubbard model. Although it is one of the simplest models to include electron-electron interactions, it cannot be solved analytically in more than one dimension and thus numerical techniques must be employed. Although there have been great strides in classical numerical …