Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Quantum Physics

A Formalism For Extracting Track Functions From Jet Measurements, Kyle Lee, Ian Moult, Felix Ringer, Wouter J. Waalewijn Jan 2024

A Formalism For Extracting Track Functions From Jet Measurements, Kyle Lee, Ian Moult, Felix Ringer, Wouter J. Waalewijn

Physics Faculty Publications

The continued success of the jet substructure program will require widespread use of tracking information to enable increasingly precise measurements of a broader class of observables. The recent reformulation of jet substructure in terms of energy correlators has simplified the incorporation of universal non-perturbative matrix elements, so called “track functions”, in jet substructure calculations. These advances make it timely to understand how these universal non-perturbative functions can be extracted from hadron collider data, which is complicated by the use jet algorithms. In this paper we introduce a new class of jet functions, which we call (semi-inclusive) track jet functions, which …


Inverse Moment Of The B Meson Quasidistribution Amplitude, Ji Xu, Xi-Ruo Zhang, Shuai Zhao Jan 2022

Inverse Moment Of The B Meson Quasidistribution Amplitude, Ji Xu, Xi-Ruo Zhang, Shuai Zhao

Physics Faculty Publications

We perform a study on the structure of the inverse moment (IM) of quasidistributions, by taking B-meson quasidistribution amplitude (quasi-DA) as an example. Based on a one-loop calculation, we derive the renormalization group equation and velocity evolution equation for the first IM of quasi-DA. We find that, in the large velocity limit, the first IM of B-meson quasi-DA can be factorized into IM as well as logarithmic moments of light-cone distribution amplitude (LCDA), accompanied by short distance coefficients. Our results can be useful either in understanding the patterns of perturbative matching in large momentum effective theory or evaluating inverse …


Positivity And Renormalization Of Parton Densities, John Collins, Ted C. Rogers, Nobuo Sato Jan 2022

Positivity And Renormalization Of Parton Densities, John Collins, Ted C. Rogers, Nobuo Sato

Physics Faculty Publications

There have been recent debates about whether MS parton densities exactly obey positivity bounds (including the Soffer bound) and whether the bounds should be applied as a constraint on global fits to parton densities and on nonperturbative calculations. A recent paper [Candido et al., Can MS parton distributions be negative?, J. High Energy Phys. 11 (2020) 129] appears to provide a proof of positivity in contradiction with earlier work by other authors. We examine their derivation and find that its primary failure is in the apparently uncontroversial statement that bare parton density (or distribution) function (pdfs) are always …


Intrinsic Transverse Momentum And Evolution In Weighted Spin Asymmetries, Jian-Wei Qiu, Ted C. Rogers, Bowen Wang Jan 2020

Intrinsic Transverse Momentum And Evolution In Weighted Spin Asymmetries, Jian-Wei Qiu, Ted C. Rogers, Bowen Wang

Physics Faculty Publications

The transverse momentum-dependent (TMD) and collinear higher twist theoretical factorization frameworks are the most frequently used approaches to describe spin-dependent hard cross sections weighted by and integrated over transverse momentum. Of particular interest is the contribution from small transverse momentum associated with the target bound state. In phenomenological applications, this contribution is often investigated using transverse momentum weighted integrals that sharply regulate the large transverse momentum contribution, for example, with Gaussian parametrizations. Since the result is a kind of hybrid of TMD and collinear (inclusive) treatments, it is important to establish if and how the formalisms are related in applications …


Pion Distribution Amplitude And Quasidistributions, A. V. Radyushkin Mar 2017

Pion Distribution Amplitude And Quasidistributions, A. V. Radyushkin

Physics Faculty Publications

We extend our analysis of quasidistributions onto the pion distribution amplitude. Using the formalism of parton virtuality distribution amplitudes, we establish a connection between the pion transverse momentum dependent distribution amplitude Ψ(x, k2⊥) and the pion quasidistribution amplitude (QDA) Qπ(y, p3). We build models for the QDAs from the virtuality-distribution-amplitude-based models for soft transverse momentum dependent distribution amplitudes, and analyze the p3 dependence of the resulting QDAs. As there are many models claimed to describe the primordial shape of the pion distribution amplitude, we present the p3-evolution …


Role Of The Euclidean Signature In Lattice Calculations Of Quasidistributions And Other Nonlocal Matrix Elements, Raúl A. Briceño, Maxwell T. Hansen, Christopher J. Monahan Jan 2017

Role Of The Euclidean Signature In Lattice Calculations Of Quasidistributions And Other Nonlocal Matrix Elements, Raúl A. Briceño, Maxwell T. Hansen, Christopher J. Monahan

Physics Faculty Publications

Lattice quantum chromodynamics (QCD) provides the only known systematic, nonperturbative method for first-principles calculations of nucleon structure. However, for quantities such as light-front parton distribution functions (PDFs) and generalized parton distributions (GPDs), the restriction to Euclidean time prevents direct calculation of the desired observable. Recently, progress has been made in relating these quantities to matrix elements of spatially nonlocal, zero-time operators, referred to as quasidistributions. Still, even for these time-independent matrix elements, potential subtleties have been identified in the role of the Euclidean signature. In this work, we investigate the analytic behavior of spatially nonlocal correlation functions and demonstrate that …


Combinatorial Algorithms For Perturbation Theory And Application On Quantum Computing, Yudong Cao Dec 2016

Combinatorial Algorithms For Perturbation Theory And Application On Quantum Computing, Yudong Cao

Open Access Dissertations

Quantum computing is an emerging area between computer science and physics. Numerous problems in quantum computing involve quantum many-body interactions. This dissertation concerns the problem of simulating arbitrary quantum many-body interactions using realistic two-body interactions. To address this issue, a general class of techniques called perturbative reductions (or perturbative gadgets) is adopted from quantum complexity theory and in this dissertation these techniques are improved for experimental considerations. The idea of perturbative reduction is based on the mathematical machinery of perturbation theory in quantum physics. A central theme of this dissertation is then to analyze the combinatorial structure of the perturbation …


Pointer States Via Engineered Dissipation, Kaveh Khodjasteh, Viatcheslav V. V. Dobrovitski, Lorenza Viola Aug 2011

Pointer States Via Engineered Dissipation, Kaveh Khodjasteh, Viatcheslav V. V. Dobrovitski, Lorenza Viola

Dartmouth Scholarship

Pointer states are long-lasting high-fidelity states in open quantum systems. We show how any pure state in a non-Markovian open quantum system can be made to behave as a pointer state by suitably engineering the coupling to the environment via open-loop periodic control. Engineered pointer states are constructed as approximate fixed points of the controlled open-system dynamics, in such a way that they are guaranteed to survive over a long time with a fidelity determined by the relative precision with which the dynamics is engineered. We provide quantitative minimum-fidelity bounds by identifying symmetry and ergodicity conditions that the decoherence-inducing perturbation …


Coherent-State Transfer Via Highly Mixed Quantum Spin Chains, Paola Cappellaro, Lorenza Viola, Chandrasekhar Ramanathan Mar 2011

Coherent-State Transfer Via Highly Mixed Quantum Spin Chains, Paola Cappellaro, Lorenza Viola, Chandrasekhar Ramanathan

Dartmouth Scholarship

Spin chains have been proposed as quantum wires in many quantum-information processing architectures. Coherent transmission of quantum information in spin chains over short distances is enabled by their internal dynamics, which drives the transport of single-spin excitations in perfectly polarized chains. Given the practical challenge of preparing the chain in a pure state, we propose to use a chain that is initially in the maximally mixed state. We compare the transport properties of pure and mixed-state chains and find similarities that enable the experimental study of pure-state transfer via mixed-state chains. We also demonstrate protocols for the perfect transfer of …


Scattering Of Shock Waves In Qcd, Ian Balitsky Jan 2004

Scattering Of Shock Waves In Qcd, Ian Balitsky

Physics Faculty Publications

The cross section of heavy-ion collisions is represented as a double functional integral with the saddle point being the classical solution of the Yang-Mills equations with boundary conditions/sources in the form of two shock waves corresponding to the two colliding ions. I develop the expansion of this classical solution in powers of the commutator of the Wilson lines describing the colliding particles and calculate the first two terms of the expansion.


Deeply Virtual Compton Scattering At Small X, Ian Balitsky, Elena Kuchina Jan 2000

Deeply Virtual Compton Scattering At Small X, Ian Balitsky, Elena Kuchina

Physics Faculty Publications

We calculate the cross section of deeply virtual Compton scattering at large energies and intermediate momentum transfers.