Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Quantum Physics

Two-Step Single Qubit Gates For Superconducting Qubits, Edward Takyi Dec 2022

Two-Step Single Qubit Gates For Superconducting Qubits, Edward Takyi

Open Access Theses & Dissertations

Why quantum information processing? Contemporary manipulation and transmission of information is executed through physical machines (computers, routers, scanners, etc.) in which Classical Mechanics is used to describe the embodiment and transformation of information. However, the physical theory of the world is not Classical Mechanics. And so, there is no reason to suppose that machines following the laws of Classical Mechanics would have the same computational power like quantum machines. Quantum computers would break the rules of classical computers and they would be able solve problems that are intractable on conventional supercomputers.

In order to fabricate quantum computers and make significant …


Optimization Of Quantum Circuits Using Spin Bus Multiqubit Gates For Quantum Dots, Miguel Gonzalo Rodriguez Aug 2022

Optimization Of Quantum Circuits Using Spin Bus Multiqubit Gates For Quantum Dots, Miguel Gonzalo Rodriguez

Open Access Theses & Dissertations

The current conventional method for designing quantum circuits is to employ a number of single- and two-qubit gates, which often necessitate a lengthy sequence, imposing severe constraints on quantum coherence and quantum circuit complexity. Coupling multiple spin qubits to a common spin chain can result in a generically multiqubit gate. It is demonstrated that the multiqubit gate can substantially reduce the depth of quantum circuits and establish multiqubit entanglement considerably more quickly.


Density Functional Calculations On Single Molecular (1d) And Van Der Waals Bi -Layered (2d) Magnets., Md Shamsul Alam Jan 2020

Density Functional Calculations On Single Molecular (1d) And Van Der Waals Bi -Layered (2d) Magnets., Md Shamsul Alam

Open Access Theses & Dissertations

Low-dimensional magnetic materials show novel properties that is not seen in bulk magnets. The weak interactions such as spin-orbit interactions, electron correlation, van der Waals interaction in case magnetic bi-layers, play an important role in determining the properties of the system. Using density functional theory, we computationally investigated two categories of magnetic material- 1: Single Molecular Magnets (SMM) 2: Van der Waals layered Cr-Halide magnets. We used different classes of density functionals to examine the spin ordering and magnetic anisotropy barriers in several single molecule magnets - Mn12, Co4, Ni4, V15. We find that the magnetic anisotropy barrier significantly depends …


Some Fermi-Lowdin Orbital Self-Interaction Correction Studies On Atomic Systems, Christopher Alexis Ibarra Jan 2020

Some Fermi-Lowdin Orbital Self-Interaction Correction Studies On Atomic Systems, Christopher Alexis Ibarra

Open Access Theses & Dissertations

Density Function Theory (DFT) is a popular quantum chemistry calculation method with many appeals but also deficiencies. Many modification and additions to the method have been made over the years, such as self-interaction corrections and new density functional approximations. We review here the theoretical background needed for a basic understanding of quantum chemistry calculations. In addition, we present the quantum chemistry calculation method used in this paper called Fermi-Lowdin Self-Interaction Correction (FLOSIC), including the base code it was implemented on, the Naval Research Laboratory Molecular Orbital Library (NRLMOL) Code, and the resulting modified code simply called FLOSIC. Furthermore, we explore …


Development And Assesment Of Local Scaled Self-Interaction Corrected Density Functional Method With Simple Scaling Factor, Selim Romero Jan 2020

Development And Assesment Of Local Scaled Self-Interaction Corrected Density Functional Method With Simple Scaling Factor, Selim Romero

Open Access Theses & Dissertations

The Hohenberg-Kohn-Sham (HKS) density functional theory (DFT) is widely used to compute electronic structures of atoms, molecules, and solids. It is an exact theory in which ground state electron density plays the role of basic variable, same as the wavefunction does in quantum mechanics. The total ground state energy is a functional of electron density. The practical application of HKS DFT require approximation to the exchange-correlation energy functional. Many density functional approximations (DFAs) with various degree of sophistication and complexities have been developed. Depending on the complexity, these functionals include electron density, density gradients, density Laplacian, kinetic energy densities, Hartree-Fock …


Scalability Improvements To Nrlmol For Dft Calculations Of Large Molecules, Carlos Manuel Diaz Jan 2016

Scalability Improvements To Nrlmol For Dft Calculations Of Large Molecules, Carlos Manuel Diaz

Open Access Theses & Dissertations

Advances in high performance computing (HPC) have provided a way to treat large, computationally demanding tasks using thousands of processors. With the development of more powerful HPC architectures, the need to create efficient and scalable code has grown more important. Electronic structure calculations are valuable in understanding experimental observations and are routinely used for new materials predictions. For the electronic structure calculations, the memory and computation time are proportional to the number of atoms. Memory requirements for these calculations scale as N2, where N is the number of atoms. While the recent advances in HPC offer platforms with large numbers …


Complex Gleason Measures And The Nemytsky Operator, Miguel Angel Valles Jan 2016

Complex Gleason Measures And The Nemytsky Operator, Miguel Angel Valles

Open Access Theses & Dissertations

This Thesis is devoted to generalize previous results on Gleason measures

to complex Gleason measures, and to develop a functional calculus

for complex measures in relation to the Nemytsky operator. Furthermore

we present the interpretation of our results in the field of quantum

mechanics, some concrete examples and further extensions of several

theorems.


On Relational Quantum Mechanics, Oscar Acosta Jan 2010

On Relational Quantum Mechanics, Oscar Acosta

Open Access Theses & Dissertations

A problem facing quantum mechanics is that there are a number of views or interpretations available that purport to 'explain' quantum mechanics. In this paper I discuss and analyze the view of relational quantum mechanics by Carlo Rovelli in the context of theoretical underdetermination. I will show that even though Rovelli offers a view that consolidates some of the aspects of competing theories it still falls short of breaking out of the theoretical underdetermination. The criteria that I have used to consider a theory successful in this context is one that increases the predictive output of quantum theory. Lacking an …