Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Quantum Physics

Resonant Energy Exchange In Ultracold Rydberg Atoms, Samantha Grubb, Alan Okinaka Jul 2022

Resonant Energy Exchange In Ultracold Rydberg Atoms, Samantha Grubb, Alan Okinaka

Physics and Astronomy Summer Fellows

Ultracold Rydberg atoms serve as good systems in which resonant dipole-dipole interactions can be observed. The goal of our work is to design a simulation in which energy exchange among many nearly evenly spaced energy levels is observed. These observations are useful for understanding the time evolution of complicated quantum systems, and have applications in quantum computing and simulating. We are utilizing a supercomputer to run our simulation as well as studying the system experimentally. Once we obtain simulated results, we plan to compare them with the results obtained in a lab.


Improving The State Selectivity Of Field Ionization With Quantum Control, Vincent C. Gregoric, Jason Bennett, Bianca R. Gualtieri, Ankitha Kannad, Zhimin Cheryl Liu, Zoe A. Rowley, Thomas J. Carroll, Michael W. Noel Dec 2018

Improving The State Selectivity Of Field Ionization With Quantum Control, Vincent C. Gregoric, Jason Bennett, Bianca R. Gualtieri, Ankitha Kannad, Zhimin Cheryl Liu, Zoe A. Rowley, Thomas J. Carroll, Michael W. Noel

Physics and Astronomy Faculty Publications

The electron signals from the field ionization of two closely spaced Rydberg states of rubidium-85 are separated using quantum control. In selective field ionization, the state distribution of a collection of Rydberg atoms is measured by ionizing the atoms with a ramped electric field. Generally, atoms in higher energy states ionize at lower fields, so ionized electrons which are detected earlier in time can be correlated with higher energy Rydberg states. However, the resolution of this technique is limited by the Stark effect. As the electric field is increased, the electron encounters numerous avoided Stark level crossings which split the …


Catalysis Of Stark-Tuned Interactions Between Ultracold Rydberg Atoms, A. L. Win, W. D. Williams, Thomas J. Carroll, C. I. Sukenik Sep 2018

Catalysis Of Stark-Tuned Interactions Between Ultracold Rydberg Atoms, A. L. Win, W. D. Williams, Thomas J. Carroll, C. I. Sukenik

Physics and Astronomy Faculty Publications

We have experimentally investigated a catalysis effect in the resonant energy transfer between ultracold 85Rb Rydberg atoms. We studied the time dependence of the process, 34p + 34p → 34s + 35s, and observed an enhancement of 34s state population when 34d state atoms are added.We have also performed numerical model simulations, which are in qualitative agreement with experiment and indicate that the enhancement arises from a redistribution of p-state atoms due to the presence of the d-state atoms.


Quantum Control Via A Genetic Algorithm Of The Field Ionization Pathway Of A Rydberg Electron, Vincent C. Gregoric, Xinyue Kang, Zhimin Cheryl Liu, Zoe A. Rowley, Thomas J. Carroll, Michael W. Noel Aug 2017

Quantum Control Via A Genetic Algorithm Of The Field Ionization Pathway Of A Rydberg Electron, Vincent C. Gregoric, Xinyue Kang, Zhimin Cheryl Liu, Zoe A. Rowley, Thomas J. Carroll, Michael W. Noel

Physics and Astronomy Faculty Publications

Quantum control of the pathway along which a Rydberg electron field ionizes is experimentally and computationally demonstrated. Selective field ionization is typically done with a slowly rising electric field pulse. The (1/n*)4 scaling of the classical ionization threshold leads to a rough mapping between arrival time of the electron signal and principal quantum number of the Rydberg electron. This is complicated by the many avoided level crossings that the electron must traverse on the way to ionization, which in general leads to broadening of the time-resolved field ionization signal. In order to control the ionization pathway, thus …


Optimizing An Electron's Path To Ionization Using A Genetic Algorithm, Jason Bennett, Kevin Choice Jul 2017

Optimizing An Electron's Path To Ionization Using A Genetic Algorithm, Jason Bennett, Kevin Choice

Physics and Astronomy Summer Fellows

A Rydberg atom is an atom with a highly excited and weakly bound valence electron. A widespread method of studying quantum mechanics with Rydberg atoms is to ionize the electron and measure its arrival time. We use a Genetic Algorithm (GA) to control the electron's path to ionization. The Rydberg electron's energy levels are strongly shifted by the presence of an electric field. The energy levels shift and curve, but never cross. At an avoided crossing the electron can jump from one level to the next. By engineering the electric field's time dependence, we thereby control the path to ionization. …


Simulations Of The Angular Dependence Of The Dipole-Dipole Interaction, Jacob T. Paul, Matan Peleg Jul 2015

Simulations Of The Angular Dependence Of The Dipole-Dipole Interaction, Jacob T. Paul, Matan Peleg

Physics and Astronomy Summer Fellows

In our project we ran computations on a supercomputer to simulate experiments performed on highly excited atoms at μK temperatures. At μK temperatures the atoms are moving slowly so there are essentially no collisions of the atoms on the time scales at which we perform our experiments. In the absence of collisions the atoms exchange energy through long range dipole-dipole interactions. This exchange depends on the distances between and relative orientation of the atoms. The angular dependence between two atoms has recently been studied experimentally1 . We simulate experimentally accessible spatial arrangements to see if the effect of the …


Simulations Of The Angular Dependence Of The Dipole-Dipole Interaction, Matan Peleg, Jacob T. Paul Jul 2015

Simulations Of The Angular Dependence Of The Dipole-Dipole Interaction, Matan Peleg, Jacob T. Paul

Physics and Astronomy Summer Fellows

We conducted simulations of Rydberg atoms in a magneto-optical trap using the supercomputer available on campus and the COMET supercomputer provided by the NSF. Our research focused on the angular dependence of the long range interaction between Rydberg atoms. We simulated randomly distributed atoms alligned with a magnetic and electric field. We compared the simulated interaction rates for different electric field directions.


Toward Analog Quantum Computing: Simulating Designer Atomic Systems, Jacob L. Bigelow, Veronica L. Sanford Jul 2015

Toward Analog Quantum Computing: Simulating Designer Atomic Systems, Jacob L. Bigelow, Veronica L. Sanford

Physics and Astronomy Summer Fellows

We use a magneto-optical trap to cool rubidium atoms to temperatures in the µK range. On the µs timescales of our experiment, the atoms are moving slowly enough that they appear stationary. We then excite them to a Rydberg state, where the outer electron is loosely bound. In these high energy states, the atoms can exchange energy with each other. Since the energy exchange depends on the separation and the relative orientation of the atoms, we can potentially control their interactions by controlling the spatial arrangements of the atoms. We model this system using simulations on a supercomputer …


Toward Quantum Analog Computing: Simulating Designer Atomic Systems, Veronica L. Sanford, Jacob L. Bigelow Jul 2015

Toward Quantum Analog Computing: Simulating Designer Atomic Systems, Veronica L. Sanford, Jacob L. Bigelow

Physics and Astronomy Summer Fellows

We use a magneto-optical trap to cool rubidium atoms to temperatures in the µK range. On the µs timescales of our experiment, the atoms are moving slowly enough that they appear stationary. We then excite them to a Rydberg state, where the outer electron is loosely bound. In these high energy states, the atoms can exchange energy with each other. Since the energy exchange depends on the separation and the relative orientation of the atoms, we can potentially control their interactions by controlling the spatial arrangements of the atoms. We model this system using simulations on a supercomputer …