Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 37

Full-Text Articles in Quantum Physics

Mechanistic Investigation Of C—C Bond Activation Of Phosphaalkynes With Pt(0) Complexes, Roberto M. Escobar, Abdurrahman C. Ateşin, Christian Müller, William D. Jones, Tülay Ateşin Mar 2024

Mechanistic Investigation Of C—C Bond Activation Of Phosphaalkynes With Pt(0) Complexes, Roberto M. Escobar, Abdurrahman C. Ateşin, Christian Müller, William D. Jones, Tülay Ateşin

Research Symposium

Carbon–carbon (C–C) bond activation has gained increased attention as a direct method for the synthesis of pharmaceuticals. Due to the thermodynamic stability and kinetic inaccessibility of the C–C bonds, however, activation of C–C bonds by homogeneous transition-metal catalysts under mild homogeneous conditions is still a challenge. Most of the systems in which the activation occurs either have aromatization or relief of ring strain as the primary driving force. The activation of unstrained C–C bonds of phosphaalkynes does not have this advantage. This study employs Density Functional Theory (DFT) calculations to elucidate Pt(0)-mediated C–CP bond activation mechanisms in phosphaalkynes. Investigating the …


Contributions Of Tunneling In 8Π-6Π Electrocyclic Cascade Reactions Of Bicyclo[4.2.0]Octa-2,4-Diene Moieties, Ishika Jain, Claire Castro, William L. Karney Nov 2023

Contributions Of Tunneling In 8Π-6Π Electrocyclic Cascade Reactions Of Bicyclo[4.2.0]Octa-2,4-Diene Moieties, Ishika Jain, Claire Castro, William L. Karney

Featured Student Work

Six-electron electrocyclic reactions usually require relatively high temperatures; however recent research has shown that such reactions can occur at significantly lower temperatures in biosynthetic and biomimetic pathways. Pathways resulting in bicyclo[4.2.0]octa-2,4-diene moieties arise from thermally allowed 8π-6π electrocyclization cascade reactions of 1,3,5,7-octatetraenes, as in the biosynthesis of endiandric acids, elysiapyrones, and numerous other natural products. We report multidimensional tunneling calculations to explore the possible contribution of heavy-atom tunneling (e.g. by carbon) to biosynthetic pathways and biomimetic syntheses, and thus to provide a more complete picture of biochemical kinetics. M06-2X/cc-pVDZ calculations on the 8π-6π cascade cyclizations of methylated octatetraene model systems …


Modeling Excited State Processes In Molecular Aggregates By Constructing An Adaptive Basis For The Hierarchy Of Pure States, Leonel Varvelo Apr 2023

Modeling Excited State Processes In Molecular Aggregates By Constructing An Adaptive Basis For The Hierarchy Of Pure States, Leonel Varvelo

Chemistry Theses and Dissertations

Simulating excitation energy transfer (EET) in molecular materials is of crucial importance for the development of and understanding of materials such as organic photovoltaics and photosynthetic systems and further development of novel materials. The Hierarchy of Pure States (HOPS) is an exact framework for the time evolution of an open quantum system in which a hierarchy of stochastic wave functions are propagated in time. The adaptive HOPS (adHOPS) method achieves size-invariant scaling with the number of simulated molecules for sufficiently large aggregates by using an adaptive basis that moves with the excitation through the material. To demonstrate the power of …


Diffractive Imaging Of Laser Induced Molecular Reactions With Kiloelectron-Volt Ultrafast Electron Diffraction, Yanwei Xiong Apr 2023

Diffractive Imaging Of Laser Induced Molecular Reactions With Kiloelectron-Volt Ultrafast Electron Diffraction, Yanwei Xiong

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Capturing the structural changes during a molecular reaction with ultrafast electron diffraction (UED) requires a high spatiotemporal resolution and sufficiently high signal-to-noise to record the signals with high fidelity. In this dissertation, I have focused on the development of a tabletop gas phase keV-UED setup with a femtosecond temporal resolution. A DC electron gun was employed to generate electron pulses with a high repetition rate of 5 kHz. The space charge effect in the electron pulse was ameliorated by compressing the 90 keV electron pulse longitudinally with a time varying electric field in an RF cavity. The velocity mismatch between …


Architecture Of Heptagonal Metallo-Macrocycles Via Embedding Metal Nodes Into Its Rigid Backbone, A.M.Shashika D. Wijerathna, He Zhao, Qiangqiang Dong, Qixia Bai, Zhiyuan Jiang, Jie Yuan, Jun Wang, Mingzhao Chen, Markus Zirnheld, Rockwell T. Li, Yuan Zhang, Yiming Li, Pingshan Wang Jan 2023

Architecture Of Heptagonal Metallo-Macrocycles Via Embedding Metal Nodes Into Its Rigid Backbone, A.M.Shashika D. Wijerathna, He Zhao, Qiangqiang Dong, Qixia Bai, Zhiyuan Jiang, Jie Yuan, Jun Wang, Mingzhao Chen, Markus Zirnheld, Rockwell T. Li, Yuan Zhang, Yiming Li, Pingshan Wang

College of Sciences Posters

Metal-organic macrocycles have received increasing attention not only due to their versatile applications such as molecular recognition, compounds encapsulation, anti-bacteria and others, but also for their important role in the study of structure-property relationship at nano scale. However, most of the constructions utilize benzene ring as the backbone, which restricts the ligand arm angle in the range of 60, 120 and 180 degrees. Thus, the topologies of most metallo-macrocycles are limited as triangles and hexagons, and explorations of using other backbones with large angles and the construction of metallo-macrocycles with more than six edges are very rare.

In this study, …


Using Superatomic Clusters And Charge Transfer Ligands To Control Electronic Characteristics Of Phosphorene Nanoribbons And Phosphorene Monolayer, Ryan Lambert Jan 2023

Using Superatomic Clusters And Charge Transfer Ligands To Control Electronic Characteristics Of Phosphorene Nanoribbons And Phosphorene Monolayer, Ryan Lambert

Theses and Dissertations

Phosphorene is a two-dimensional electron poor p-type semiconductor with high carrier mobility and great promise for applications in electronics and optoelectronics. As the main theme in this dissertation, the following work represents different investigations of various electronic properties associated with phosphorene. Most notable are the findings on charge transfer doping with metal-chalcogenide superatoms which displays novel control of the two most important properties of a semiconductor – the band gap energy and the nature of carriers. By tuning the width of the gap and p-/n-type character of conduction, we gain control over a material’s capacity to play a certain role …


Theoretical Investigation On Optical Properties Of 2d Materials And Mechanical Properties Of Polymer Composites At Molecular Level, Geeta Sachdeva Jan 2022

Theoretical Investigation On Optical Properties Of 2d Materials And Mechanical Properties Of Polymer Composites At Molecular Level, Geeta Sachdeva

Dissertations, Master's Theses and Master's Reports

The field of two-dimensional (2D) layered materials provides a new platform for studying diverse physical phenomena that are scientifically interesting and relevant for technological applications. Theoretical predictions from atomically resolved computational simulations of 2D materials play a pivotal role in designing and advancing these developments. The focus of this thesis is 2D materials especially graphene and BN studied using density functional theory (DFT) and molecular dynamics (MD) simulations. In the first half of the thesis, the electronic structure and optical properties are discussed for graphene, antimonene, and borophene. It is found that the absorbance in (atomically flat) multilayer antimonene (group …


A Theoretical Study Of Synchronous Proton Transfer In (Hf)N, (H2O) N, And (Hcl) N Where N = 3, 4, 5, Johnny Yang May 2021

A Theoretical Study Of Synchronous Proton Transfer In (Hf)N, (H2O) N, And (Hcl) N Where N = 3, 4, 5, Johnny Yang

Honors Theses

For (HF)n, (H2O)n, and (HCl)n (n = 3 − 5), we have rigorously characterized the structures for the minima and transition states for synchronous proton transfer (SPT) with the CCSD(T) method and aug-cc-pVTZ basis set. The electronic barrier heights (∆E) associated with these transition states have also been computed with the explicitly correlated CCSD(T)-F12 method and the aug-cc-pVQZ-F12 basis set (abbreviated aQZ-F12). (HCl)n (n = 3 − 5) SPT transition states have not been previously identified to the best of our knowledge, and they have been found …


Determination Of The Rydberg Constant From The Emission Spectra Of H And He+, Kyle D. Shaffer Feb 2021

Determination Of The Rydberg Constant From The Emission Spectra Of H And He+, Kyle D. Shaffer

Ramifications

Abstract

In this experiment, the Rydberg constants for the hydrogen atom and He+ were determined by analysis of the emission spectra of Hand He, respectively, in comparison to the principal quantum numbers of each transition. Using both a hydrogen and then a helium atomic lamp attached to a 0.5 m grating spectrometer and a photomultiplier detector (PMT), a change in voltage detected by the PMT can be paired with a corresponding wavelength passing through the spectrometer from each emission peak in the visible to ultraviolet range. The peaks acquired from this change in voltage were analyzed to find their …


Interactions Of Organic Fluorophores With Plasmonic Surface Lattice Resonances, Robert J. Collison Feb 2021

Interactions Of Organic Fluorophores With Plasmonic Surface Lattice Resonances, Robert J. Collison

Dissertations, Theses, and Capstone Projects

It is common knowledge that metals, alloys and pure elements alike, are lustrous and reflective, the more so when a metal surface is flat, polished, and free from oxidation and surface fouling. However, some metals reflect visible light, in the 380 nm to 740 nm range of wavelengths, much more strongly than others. In particular, some metals reflect wavelengths in certain portions of the ultraviolet (UV), visible, and near-infrared (NIR) regime, let us say 200 nm to 2000 nm, while absorbing light strongly in other segments of this range. There are several factors that account for this difference between various …


Ligand Effects On Electronic, Magnetic, And Catalytic Properties Of Clusters And Cluster Assemblies, Dinesh Bista 9288522 Jan 2021

Ligand Effects On Electronic, Magnetic, And Catalytic Properties Of Clusters And Cluster Assemblies, Dinesh Bista 9288522

Theses and Dissertations

Ligands commonly protect metallic clusters against reacting with outside reactants. However, ligands can also be used to control the redox properties enabling the formation of super donors/acceptors that can donate/accept multiple electrons. This thesis focuses on how the ligands can be used to control the electronic and magnetic features of clusters and ligand stabilized cluster-based assemblies, leading to nano pn junctions with directed transport, the possibility of light-harvesting, and catalysts for cross-coupling reactions. The thesis addresses three distinct classes of clusters and their applications. The first class of cluster “metal chalcogen clusters” is the central idea of the thesis focused …


Nuclear-Targeted Gold Nanoparticles Enhance The Effects Of Radiation Therapy With And Without Liposomal Delivery, Maureen Aliru Dec 2020

Nuclear-Targeted Gold Nanoparticles Enhance The Effects Of Radiation Therapy With And Without Liposomal Delivery, Maureen Aliru

Dissertations & Theses (Open Access)

Less that 10% of pancreatic cancer patients are eligible for curative resection, and clinical trials evaluating chemoradiation in locally advanced patients with unresectable disease have been largely disappointing. New and creative therapeutic approaches are needed to address the unment need for treatment options. The objective of this thesis is to advance radiosensitization of treatment-resistant densely desmoplastic pancreatic cancer using nanoparticles to surmount biological barriers to effective particle distribution for DNA-targeting.

Clinical translation of radiosensitizing nanoparticles has stalled owing to technical challenges. Current strategies to use AuNPs for radiosensitization require large quantities of gold, kilovoltage x-rays, immediate irradiation after intravenous administration, …


Radial Basis Densities And The Density Functional-Based Atom-In-Molecule: Designing Charge-Transfer Potentials, Godwin Amo-Kwao Nov 2020

Radial Basis Densities And The Density Functional-Based Atom-In-Molecule: Designing Charge-Transfer Potentials, Godwin Amo-Kwao

Nanoscience and Microsystems ETDs

Classical potentials that are capable of describing charge transfer and charge polarization in complex systems are of central importance for classical atomistic simulation of biomolecules and materials. Current potentials—regardless of the system—do not generalize well, and, with the exception of highly-specialized empirical potentials tuned for specific systems, cannot describe chemical bond formation and breaking. The charge-transfer embedded atom method (CT-EAM), a formal, DFT-based extension to the original EAM for metals, has been developed to address these issues by modeling charge distortion and charge transfer in interacting systems using pseudoatom building blocks instead of the electron densities of isolated atoms. CT-EAM …


H-Atom Ladder Operator Revisited, Carl W. David Aug 2020

H-Atom Ladder Operator Revisited, Carl W. David

Chemistry Education Materials

An error laden note (Am. J. Phys., 34, 984,(1966)) concerning the ladder operator solution to the hydrogen atom electronic energy levels is corrected.


Computational Modeling Of Charge And Excitation Energy Transfer Dynamics In Complex Environments, Ning Chen Feb 2020

Computational Modeling Of Charge And Excitation Energy Transfer Dynamics In Complex Environments, Ning Chen

Dissertations, Theses, and Capstone Projects

This thesis describes computational simulations of charge and exciton dynamics and quantum calculations of organic conjugated oligomers. A comprehensive computational study of charge hopping dynamics was conducted for a model of disordered chain of sites coupled to quantum environments. Time-dependent mean square displacement, diffusion constant, and mobility were calculated by three different computational methods for solving the master equation, which validate the accuracy of calculations. Approximate rate kernels were also tested to understand the effects of approximations in representing quantum environments. In addition to the effects of temperature and disorder, different values of the gradient in the site energy were …


Some Fermi-Lowdin Orbital Self-Interaction Correction Studies On Atomic Systems, Christopher Alexis Ibarra Jan 2020

Some Fermi-Lowdin Orbital Self-Interaction Correction Studies On Atomic Systems, Christopher Alexis Ibarra

Open Access Theses & Dissertations

Density Function Theory (DFT) is a popular quantum chemistry calculation method with many appeals but also deficiencies. Many modification and additions to the method have been made over the years, such as self-interaction corrections and new density functional approximations. We review here the theoretical background needed for a basic understanding of quantum chemistry calculations. In addition, we present the quantum chemistry calculation method used in this paper called Fermi-Lowdin Self-Interaction Correction (FLOSIC), including the base code it was implemented on, the Naval Research Laboratory Molecular Orbital Library (NRLMOL) Code, and the resulting modified code simply called FLOSIC. Furthermore, we explore …


Recent Developments In The Pyscf Program Package, Qiming Sun, Xing Zhang, Samragni Banerjee, Peng Bao, Marc Barbry, Nick S. Blunt, Nikolay A. Bogdanov, George H. Booth, Jia Chen, Zhi-Hao Cui, Janus J. Eriksen, Yang Gao, Sheng Gun, Jan Hermann, Matthew R. Hermes, Kevin Koh, Peter Koval, Susi Lehtola, Zhendong Li, Junzi Liu, Narbe Mardirossian, James D. Mcclain, Mario Motta, Bastien Mussard, Hung Q. Pham, Artem Pulkin, Wirawan Purwanto, Paul J. Robinson, Enrico Ronca, Elvira R. Sayfutyarova, Maximillian Scheurer, Henry F. Schurkus, James E.T. Smith, Chong Sun, Shi-Ning Sun, Shiv Upadhyay, Lucas K. Wagner, Xiao Wang, Alec White, James Daniel Whitfield, Mark J. Williamson, Sebastian Wouters, Jun Yang, Jason M. Yu, Tianyu Zhu, Timothy C. Berkelbach, Sandeep Sharma, Alexander Yu Sokolov, Garnet Kin-Lic Chan Jan 2020

Recent Developments In The Pyscf Program Package, Qiming Sun, Xing Zhang, Samragni Banerjee, Peng Bao, Marc Barbry, Nick S. Blunt, Nikolay A. Bogdanov, George H. Booth, Jia Chen, Zhi-Hao Cui, Janus J. Eriksen, Yang Gao, Sheng Gun, Jan Hermann, Matthew R. Hermes, Kevin Koh, Peter Koval, Susi Lehtola, Zhendong Li, Junzi Liu, Narbe Mardirossian, James D. Mcclain, Mario Motta, Bastien Mussard, Hung Q. Pham, Artem Pulkin, Wirawan Purwanto, Paul J. Robinson, Enrico Ronca, Elvira R. Sayfutyarova, Maximillian Scheurer, Henry F. Schurkus, James E.T. Smith, Chong Sun, Shi-Ning Sun, Shiv Upadhyay, Lucas K. Wagner, Xiao Wang, Alec White, James Daniel Whitfield, Mark J. Williamson, Sebastian Wouters, Jun Yang, Jason M. Yu, Tianyu Zhu, Timothy C. Berkelbach, Sandeep Sharma, Alexander Yu Sokolov, Garnet Kin-Lic Chan

University Administration Publications

PySCF is a Python-based general-purpose electronic structure platform that supports first-principles simulations of molecules and solids as well as accelerates the development of new methodology and complex computational workflows. This paper explains the design and philosophy behind PySCF that enables it to meet these twin objectives. With several case studies, we show how users can easily implement their own methods using PySCF as a development environment. We then summarize the capabilities of PySCF for molecular and solid-state simulations. Finally, we describe the growing ecosystem of projects that use PySCF across the domains of quantum chemistry, materials science, machine learning, and …


Stereodynamical Control Of A Quantum Scattering Resonance In Cold Molecular Collisions, Pablo G. Jambrina, James F.E. Croft, Hua Guo, Mark Brouard, Balakrishnan Naduvalath, F. Javier Aoiz Jul 2019

Stereodynamical Control Of A Quantum Scattering Resonance In Cold Molecular Collisions, Pablo G. Jambrina, James F.E. Croft, Hua Guo, Mark Brouard, Balakrishnan Naduvalath, F. Javier Aoiz

Chemistry and Biochemistry Faculty Research

Cold collisions of light molecules are often dominated by a single partial wave resonance. For the rotational quenching of HD (v=1, j=2) by collisions with ground state para-H2, the process is dominated by a single L=2 partial wave resonance centered around 0.1 K. Here, we show that this resonance can be switched on or off simply by appropriate alignment of the HD rotational angular momentum relative to the initial velocity vector, thereby enabling complete control of the collision outcome.


Phantoms In Science: Nietzsche's Nonobjectivity On Planck's Quanta, Donald Richard Dickerson Iii May 2019

Phantoms In Science: Nietzsche's Nonobjectivity On Planck's Quanta, Donald Richard Dickerson Iii

Undergraduate Theses

What does Maxwell Planck's concept of phantomness suggest about the epistemological basis of science and how might a Nietzschean critique reveal solution to the weaknesses revealed? With his solution to Kirchoff's equation, Maxwell Planck launched the paradigm of quantum physics. This same solution undermined much of current understandings of science versus pseudoscience. Using Nietzsche's perspectivism and other philosophical critiques, Planck's answer to blackbody radiation is used to highlight the troubles with phantom problems in science and how to try to direct science towards a more holistic and complete scientific approach.


Characterization Of Polymers Containing Ferrocene And Imidazole With Density Functional Theory, Eric Mullins Apr 2018

Characterization Of Polymers Containing Ferrocene And Imidazole With Density Functional Theory, Eric Mullins

Electronic Theses & Dissertations

Electrochemical and UV-Vis studies on these polymers in the presence of aqueous solutions containing metal ions have revealed significant modifications in the electrochemical properties and absorption spectra. These modifications in electrochemical properties could be attributed to the ability of the imidazole to coordinate with metal ions, increasing its electron deficiency and enhancing oxidization of the nearby ferrocene moiety if it is in close proximity with imidazole. However, the mechanism of interaction between the imidazole and metal ions, as well as the equilibrium geometry of the resulting polymer-metal ion complex is unknown.

In this thesis, density functional theory (DFT) was used …


Improved Partial Charge Models In Siliceous Zeolites For The Simulation Of Adsorption And Identification Of Catalytic Sites, Jarod J. Wolffis Aug 2017

Improved Partial Charge Models In Siliceous Zeolites For The Simulation Of Adsorption And Identification Of Catalytic Sites, Jarod J. Wolffis

UNLV Theses, Dissertations, Professional Papers, and Capstones

Utilization of computational modelling and simulation is expanding as computer processing power has increased and as new tools have been developed. This thesis focuses on efforts to improve the accuracy of simulations in aluminosilicate zeolites, an industrially important category of materials for catalysis and separations. For these sorbents, partial atomic charge represents a critical parameter in molecular mechanics simulations, determining the Coulombic non-bonding interaction. Partial charges may also be used as a measure of important physical parameters of the system such as the degree of covalency or the relative acidity of catalytic sites. We compare several common methods for predicting …


Silver Nanoparticles As A Potential Solar Absorber, Benjamin Hardy May 2017

Silver Nanoparticles As A Potential Solar Absorber, Benjamin Hardy

Honors Projects

This work reports the development of Silver nanoparticles implanted into a polymer as a solar absorber. The plasmonic nature of silver nanoparticle allows for adjustments to be made in its UV-VIS-NIR absorbance spectrum. A combination of different sized/shaped particles could result in ideal absorption of the majority of the solar spectrum. Allotting this with the stability of a polymer leads to potential solids or solutions that could work as a solar absorber. Tests were also performed to determine whether or not UV-C irradiation during synthesis effects the characteristics of silver nanoparticles, in particular the absorbance. Successful synthesis of silver nanoparticle …


An Ab Initio Study Of Bonding In The Ag-Clpx3 Complex (For X = H, F), Michael Ryan Apr 2017

An Ab Initio Study Of Bonding In The Ag-Clpx3 Complex (For X = H, F), Michael Ryan

HON499 projects

Quantum Theory of Atoms in Molecules (QTAIM) and Natural Bond Orbital (NBO) analyses were performed on AgCl-PX3 complexes, where X = H, F. The analyses indicate the presence of a 3- center- 4- electron (3c4e) hyperbond between the Cl, Ag, and P atoms, formed by a charge transfer from the occupied p orbital of the phosphorus and Lowest Unoccupied Molecular Orbital (LUMO), (nominally a σ*.). Delocalization of the complexes’ electrons results from these interactions. Furthermore, the complexes were bound predominately by electrostatic interactions (approximately 80%), as opposed to covalent bonds. The structures are resonance stabilized with the Cl-Ag and Ag-P …


Manifestations Of Classical Physics In The Quantum Evolution Of Correlated Spin States In Pulsed Nmr Experiments, Martin K. Ligare Jan 2017

Manifestations Of Classical Physics In The Quantum Evolution Of Correlated Spin States In Pulsed Nmr Experiments, Martin K. Ligare

Faculty Journal Articles

Multiple-pulse NMR experiments are a powerful tool for the investigation of mole- cules with coupled nuclear spins. The product operator formalism provides a way to understand the quantum evolution of an ensemble of weakly coupled spins in such experiments using some of the more intuitive concepts of classical physics and semi- classical vector representations. In this paper I present a new way in which to inter- pret the quantum evolution of an ensemble of spins. I recast the quantum problem in terms of mixtures of pure states of two spins whose expectation values evolve identi- cally to those of classical …


Path Integral Study Of The Correlated Electronic States Of Na4–Na6, Randall W. Hall Jun 2016

Path Integral Study Of The Correlated Electronic States Of Na4–Na6, Randall W. Hall

Randall W. Hall

Feynman’s path integral formulation of quantum mechanics is used to study the correlated electronic states of Na4–Na6. Two types of simulations are performed: in the first, the nuclei are allowed to move at finite temperature in order to find the most stable geometries. In agreement with previous calculations, we find that planar structures are the most stable and that there is significant vibrational amplitude at finite temperatures, indicating that the Born–Oppenheimer surface is relatively flat. In the second type of simulation, the nuclei are held fixed at symmetric and asymmetric geometries and the correlated electron density is found. Our results …


Concerted Hydrogen-Bond Breaking By Quantum Tunneling In The Water Hexamer Prism, Jeremy O. Richardson, Cristobal Perez, Simon Lobsiger, Adam A. Reid, Berhane Temelso, George C. Shields, Zbigniew Kisiel, David J. Wales, Brooks H. Pate, Stuart C. Althorpe Jan 2016

Concerted Hydrogen-Bond Breaking By Quantum Tunneling In The Water Hexamer Prism, Jeremy O. Richardson, Cristobal Perez, Simon Lobsiger, Adam A. Reid, Berhane Temelso, George C. Shields, Zbigniew Kisiel, David J. Wales, Brooks H. Pate, Stuart C. Althorpe

Faculty Journal Articles

The nature of the intermolecular forces between water molecules is the same in small hydrogen-bonded clusters as in the bulk. The rotational spectra of the clusters therefore give insight into the intermolecular forces present in liquid water and ice. The water hexamer is the smallest water cluster to support low-energy structures with branched three-dimensional

hydrogen-bond networks, rather than cyclic two-dimensional topologies. Here we report measurements of splitting patterns in rotational transitions of the water hexamer prism, and we used quantum simulations to show that they result from geared and antigeared rotations of a pair of water molecules. Unlike previously reported …


Catalytic Methane Dissociative Chemisorption Over Pt(111): Surface Coverage Effects And Reaction Path Description, Inara Colon-Diaz Mar 2015

Catalytic Methane Dissociative Chemisorption Over Pt(111): Surface Coverage Effects And Reaction Path Description, Inara Colon-Diaz

Masters Theses

Density functional theory calculations were performed to study the dissociative chemisorption of methane over Pt(111) with the idea of finding the minimum energy path for the reaction and its dependence on surface coverage. Two approaches were used to evaluate this problem; first, we used different sizes of supercells (2x2, 3x3, 4x4) in order to decrease surface coverage in the absence of pre-adsorbed H and CH3 fragments to calculate the energy barriers of dissociation. The second approach uses a 4x4 unit cell and surface coverage is simulated by adding pre-absorbed H and CH3 fragments. Results for both approaches show …


Note: Improved Line Strengths Of Rovibrational And Rotational Transitions Within The X3Σ⁻ Ground State Of Nh, James S.A. Brooke, Peter F. Bernath, Colin M. Western Jan 2015

Note: Improved Line Strengths Of Rovibrational And Rotational Transitions Within The X3Σ⁻ Ground State Of Nh, James S.A. Brooke, Peter F. Bernath, Colin M. Western

Chemistry & Biochemistry Faculty Publications

Recently, a line list including positions and transition strengths was published for the NH X3Σ rovibrational and rotational transitions. The calculation of the transition strengths requires a conversion of transition matrix elements from Hund’s case (b) to (a). The method of this conversion has recently been improved during other work on the OH X2Π rovibrational transitions, by removing an approximation that was present previously. The adjusted method has been applied to the NH line list, resulting in more accurate transition strengths. An updated line list is presented that contains all possible transitions with v′ and …


Isotropic Oscillator Under A Magnetic And Spatially Varying Electric Field, David L. Frost Mr., Frank Hagelberg Aug 2014

Isotropic Oscillator Under A Magnetic And Spatially Varying Electric Field, David L. Frost Mr., Frank Hagelberg

Undergraduate Honors Theses

We investigate the energy levels of a particle confined in the isotropic oscillator potential with a magnetic and spatially varying electric field. Here we are able to exactly solve the Schrodinger equation, using matrix methods, for the first excited states. To this end we find that the spatial gradient of the electric field acts as a magnetic field in certain circumstances. Here we present the changes in the energy levels as functions of the electric field, and other parameters.


Dipole Bound Excited States Of Polycyclic Aromatic Hydrocarbons Containing Nitrogen And Their Relation To The Interstellar Medium, Mallory L. Theis Apr 2014

Dipole Bound Excited States Of Polycyclic Aromatic Hydrocarbons Containing Nitrogen And Their Relation To The Interstellar Medium, Mallory L. Theis

Honors College Theses

Polycyclic aromatic hydrocarbons (PAHs) are the most abundant type of molecule present in the interstellar medium (ISM). It has been hypothesized that nitrogen replacement within a ring is likely for PAHs present in the ISM. Additionally, electrons, protons, and hydrogen atoms are readily added to or removed from PAHs creating a truly diverse set of chemistries in various interstellar regions. The presence of a nitrogen within a PAH (called a PANH herein) that is additionally dehydrogenated leads to a neutral radical with a large dipole moment. It has recently been shown through the use of high-level quantum chemical computations for …