Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Quantum Physics

Analyzing Major Challenges Of Wind And Solar Variability In Power Systems, Falko Ueckerdt, Robert Brecha, Gunnar Luderer Sep 2015

Analyzing Major Challenges Of Wind And Solar Variability In Power Systems, Falko Ueckerdt, Robert Brecha, Gunnar Luderer

Physics Faculty Publications

Ambitious policy targets together with current and projected high growth rates indicate that future power systems will likely show substantially increased generation from renewable energy sources. A large share will come from the variable renewable energy (VRE) sources wind and solar photovoltaics (PV); however, integrating wind and solar causes challenges for existing power systems. In this paper we analyze three major integration challenges related to the structural matching of demand with the supply of wind and solar power: low capacity credit, reduced utilization of dispatchable plants, and over-produced generation. Based on residual load duration curves we define corresponding challenge variables …


Infographics And Mathematics: A Mechanism For Effective Learning In The Classroom, Ivan Sudakov, Thomas Bellsky, Svetlana Usenyuk, Victoria V. Polyakova Aug 2015

Infographics And Mathematics: A Mechanism For Effective Learning In The Classroom, Ivan Sudakov, Thomas Bellsky, Svetlana Usenyuk, Victoria V. Polyakova

Physics Faculty Publications

This work discusses the creation and use of infographies in an undergraduate mathematics course. Infographies are a visualization of information combining data, formulas, and images. This article discusses how to form an infographic and uses infographics on topics within mathematics and climate as examples. It concludes with survey data from undergraduate students on both the general use of infographics and on the specific infographics designed by the authors.


Sustainability Research Through The Lens Of Environmental Ethics, Daniel Clifford Fouke, Sukh Sidhu, Robert J. Brecha Oct 2014

Sustainability Research Through The Lens Of Environmental Ethics, Daniel Clifford Fouke, Sukh Sidhu, Robert J. Brecha

Physics Faculty Publications

Two core courses in the curriculum of the University of Dayton’s Sustainability, Energy, and the Environment minor, Sustainability Research I and II, were developed out of the frustration one author, Daniel Fouke, experienced while teaching a traditional course on environmental ethics for the Department of Philosophy. The often-overwhelming nature of environmental problems tended to demoralize both the instructor and the students. Seeking a way to integrate ethical analysis of complex problems with the search for solutions, two courses were proposed that would be team-taught by a philosopher and a scientist or an engineer.

Development of the courses was initially funded …


Global Fossil Energy Markets And Climate Change Mitigation: An Analysis With Remind, Nico Bauer, Ioanna Mouratiadou, Gunnar Luderer, Lavinia Baumstark, Robert J. Brecha, Ottmar Edenhofer, Elmar Kriegler Oct 2013

Global Fossil Energy Markets And Climate Change Mitigation: An Analysis With Remind, Nico Bauer, Ioanna Mouratiadou, Gunnar Luderer, Lavinia Baumstark, Robert J. Brecha, Ottmar Edenhofer, Elmar Kriegler

Physics Faculty Publications

We analyze the dynamics of global fossil resource markets under different assumptions for the supply of fossil fuel resources, development pathways for energy demand, and climate policy settings. Resource markets, in particular the oil market, are characterized by a large discrepancy between costs of resource extraction and commodity prices on international markets. We explain this observation in terms of (a) the intertemporal scarcity rent, (b) regional price differentials arising from trade and transport costs, (c) heterogeneity and inertia in the extraction sector. These effects are captured by the REMIND model. We use the model to explore economic effects of changes …


The Carbon Rent Economics Of Climate Policy, Matthias Kalkuhl, Robert J. Brecha Sep 2013

The Carbon Rent Economics Of Climate Policy, Matthias Kalkuhl, Robert J. Brecha

Physics Faculty Publications

By reducing the demand for fossil fuels, climate policy can reduce scarcity rents for fossil resource owners. As mitigation policies ultimately aim to limit emissions, a new scarcity for “space” in the atmosphere to deposit emissions is created. The associated scarcity rent, or climate rent (that is, for example, directly visible in permit prices under an emission trading scheme) can be higher or lower than the original fossil resource rent. In this paper, we analyze analytically and numerically the impact of mitigation targets, resource availability, backstop costs, discount rates and demand parameters on fossil resource rents and the climate rent. …


Development Without Energy? Assessing Future Scenarios Of Energy Consumption In Developing Countries, Jan Christof Steckel, Robert J. Brecha, Michael Jakob, Jessica Strefler, Gunnar Luderer Jun 2013

Development Without Energy? Assessing Future Scenarios Of Energy Consumption In Developing Countries, Jan Christof Steckel, Robert J. Brecha, Michael Jakob, Jessica Strefler, Gunnar Luderer

Physics Faculty Publications

We analyze the relationship between economic development and energy consumption in the context of greenhouse gas mitigation. The main contribution of this work is to compare estimates of energy thresholds in the form of minimum energy requirements to reach high levels of development with output projections of per capita final energy supply from a group of integrated assessment models (IAMs). Scenarios project that reductions of carbon emissions in developing countries will be achieved not only by means of decreasing the carbon intensity, but also by making a significant break with the historically observed relationship between energy use and economic growth. …


Logistic Curves, Extraction Costs And Peak Oil, Robert J. Brecha Dec 2012

Logistic Curves, Extraction Costs And Peak Oil, Robert J. Brecha

Physics Faculty Publications

Debates about the possibility of a near-term maximum in world oil production have become increasingly prominent over the past decade, with the focus often being on the quantification of geologically available and technologically recoverable amounts of oil in the ground. Economically, the important parameter is not a physical limit to resources in the ground, but whether market price signals and costs of extraction will indicate the efficiency of extracting conventional or nonconventional resources as opposed to making substitutions over time for other fuels and technologies. We present a hybrid approach to the peak-oil question with two models in which the …


Variable Renewable Energy In Modeling Climate Change Mitigation Scenarios, Falko Ueckerdt, Robert J. Brecha, Gunnar Luderer, Patrick Sullivan, Eva Schmid, Nico Bauer, Diana Böttger Jul 2011

Variable Renewable Energy In Modeling Climate Change Mitigation Scenarios, Falko Ueckerdt, Robert J. Brecha, Gunnar Luderer, Patrick Sullivan, Eva Schmid, Nico Bauer, Diana Böttger

Physics Faculty Publications

This paper addresses the issue of how to account for short‐term temporal variability of renewable energy sources and power demand in long‐term climate change mitigation scenarios in energy‐economic models. An approach that captures in a stylized way the major challenges to the integration of variable renewable energy sources into power systems has been developed. As a first application this approach has been introduced to REMIND‐D, a hybrid energy‐economy model of Germany. An approximation of the residual load duration curve is implemented. The approximating function endogenously changes depending on the penetration and mix of variable renewable power. The approach can thus …


Prioritizing Investment In Residential Energy Efficiency And Renewable Energy: A Case Study For The U.S. Midwest, Robert J. Brecha, Austin Mitchell, Kevin P. Hallinan, J. Kelly Kissock May 2011

Prioritizing Investment In Residential Energy Efficiency And Renewable Energy: A Case Study For The U.S. Midwest, Robert J. Brecha, Austin Mitchell, Kevin P. Hallinan, J. Kelly Kissock

Physics Faculty Publications

Residential building energy use is an important contributor to greenhouse gas emissions and in the United States represents about 20% of total energy consumption. A number of previous macro-scale studies of residential energy consumption and energy-efficiency improvements are mainly concerned with national or international aggregate potential savings. In this paper we look into the details of how a collection of specific homes in one region might reduce energy consumption and carbon emissions, with particular attention given to some practical limits to what can be achieved by upgrading the existing residential building stock. Using a simple model of residential, single-family home …


Establishing Building Recommissioning Priorities And Potential Energy Savings From Utility Energy Data, Kevin P. Hallinan, Philip Brodrick, Jessica Northridge, J. Kelly Kissock, Robert J. Brecha Jan 2011

Establishing Building Recommissioning Priorities And Potential Energy Savings From Utility Energy Data, Kevin P. Hallinan, Philip Brodrick, Jessica Northridge, J. Kelly Kissock, Robert J. Brecha

Physics Faculty Publications

An energy reduction program for commercial buildings is implemented for a SW Ohio natural gas utility. The aim of this study is to demonstrate that historical utility data for individual building customers, along with knowledge of pertinent building information (square footage, year built, number of floors, height of floors, wall construction type, and use type) available in county auditor databases, could be used to identify the best candidate buildings for recommissioning in terms of energy savings and simple payback. A study is completed for all natural gas customers of a utility in Montgomery and Clinton counties in Ohio. A total …


Cooling Atoms In An Optical Trap By Selective Parametric Excitation, Nicola Poli, Robert J. Brecha, Giacomo Roati, Giovanni Modugno Jan 2002

Cooling Atoms In An Optical Trap By Selective Parametric Excitation, Nicola Poli, Robert J. Brecha, Giacomo Roati, Giovanni Modugno

Physics Faculty Publications

We demonstrate the possibility of energy-selective removal of cold atoms from a tight optical trap by means of parametric excitation of the trap vibrational modes. Taking advantage of the anharmonicity of the trap potential, we either selectively remove the most energetic trapped atoms or excite those at the bottom of the trap by tuning the parametric modulation frequency. This process, which had been previously identified as a possible source of heating, also appears to be a robust way for forcing evaporative cooling in anharmonic traps.


Two-Level Atom In An Optical Parametric Oscillator: Spectra Of Transmitted And Fluorescent Fields In The Weak Driving Field Limit, James P. Clemens, Perry R. Rice, Pranaw Kumar Rungta, Robert J. Brecha Aug 2000

Two-Level Atom In An Optical Parametric Oscillator: Spectra Of Transmitted And Fluorescent Fields In The Weak Driving Field Limit, James P. Clemens, Perry R. Rice, Pranaw Kumar Rungta, Robert J. Brecha

Physics Faculty Publications

We consider the interaction of a two-level atom inside an optical parametric oscillator. In the weak-driving-field limit, we essentially have an atom-cavity system driven by the occasional pair of correlated photons, or weakly squeezed light. We find that we may have holes, or dips, in the spectrum of the fluorescent and transmitted light. This occurs even in the strong-coupling limit when we find holes in the vacuum-Rabi doublet. Also, spectra with a subnatural linewidth may occur. These effects disappear for larger driving fields, unlike the spectral narrowing obtained in resonance fluorescence in a squeezed vacuum; here it is important that …