Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Optics

Institution
Keyword
Publication
Publication Type
File Type

Articles 31 - 60 of 130

Full-Text Articles in Physics

Development Of A Ground-Based Aerial-Tracking Instrument For Open-Path Spectroscopy To Monitor Atmospheric Constituents, Haden Hodges Aug 2019

Development Of A Ground-Based Aerial-Tracking Instrument For Open-Path Spectroscopy To Monitor Atmospheric Constituents, Haden Hodges

Civil Engineering Undergraduate Honors Theses

A ground-based aerial-tracking instrument, known as the Ground Tracker, designed to provide spectral data to quantify greenhouse gases is under development. The Ground Tracker includes an Optical System including a high power rifle scope, video camera, and spectrometer used to locate an active light source from the Emitter, and collect spectral data by utilizing an actuating mirror. The implementation of this instrument could be made low cost by utilizing existing weather balloon infrastructure to allow the Emitter to be placed into the lower stratosphere. The recovery of the emitter will be possible by tracking the GPS coordinates. Weather balloon instrument …


Weak Value Amplification For Nonunitary Evolution, Wei-Tao Liu, Julián Martínez-Rincón, John C. Howell Jul 2019

Weak Value Amplification For Nonunitary Evolution, Wei-Tao Liu, Julián Martínez-Rincón, John C. Howell

Mathematics, Physics, and Computer Science Faculty Articles and Research

We discuss interferometric parameter estimation of the amplitude, instead of the phase, via weak value amplification. The considered weak interaction introduces modulation on the amplitude of the wave function; therefore, the two-party state experiences a nonunitary evolution. With the same pre- and postselection states as those of original weak value amplification, a much larger anomalous amplification factor can be attained. The shift in the intensity profile at the dark port and the signal-to-noise ratio for the parameter of interest get further amplified by the weak value, compared to phase-based weak value amplification. Although the nonunitary evolution introduces loss, more information …


3d Plasmonic Design Approach For Efficient Transmissive Huygens Metasurfaces, Bryan M. Adomanis, D. Bruce Burckel, Michael A. Marciniak Jul 2019

3d Plasmonic Design Approach For Efficient Transmissive Huygens Metasurfaces, Bryan M. Adomanis, D. Bruce Burckel, Michael A. Marciniak

Faculty Publications

In this paper we present a design concept for 3D plasmonic scatterers as high- efficiency transmissive metasurface (MS) building blocks. A genetic algorithm (GA) routine partitions the faces of the walls inside an open cavity into a M x N grid of voxels which can be either covered with metal or left bare, and optimizes the distribution of metal coverage needed to generate electric and magnetic modes of equal strength with a targeted phase delay (Φt) at the design wavelength. Even though the electric and magnetic modes can be more complicated than typical low order modes, with their spectral overlap …


Monolayer Doping Of Silicon-Germanium Alloys: A Balancing Act Between Phosphorus Incorporation And Strain Relaxation, Noel Kennedy, Ray Duffy, Gioele Mirabelli, Luke Eaton, Nikolay Petkov, Justin D. Holmes, Chris Hatem, Lee Walsh, Brenda Long Jul 2019

Monolayer Doping Of Silicon-Germanium Alloys: A Balancing Act Between Phosphorus Incorporation And Strain Relaxation, Noel Kennedy, Ray Duffy, Gioele Mirabelli, Luke Eaton, Nikolay Petkov, Justin D. Holmes, Chris Hatem, Lee Walsh, Brenda Long

Cappa Publications

This paper presents the application of monolayer doping (MLD) to silicon-germanium (SiGe). This study was carried out for phosphorus dopants on wafers of epitaxially grown thin films of strained SiGe on silicon with varying concentrations of Ge (18%, 30%, and 60%). The challenge presented here is achieving dopant incorporation while minimizing strain relaxation. The impact of high temperature annealing on the formation of defects due to strain relaxation of these layers was qualitatively monitored by cross-sectional transmission electron microscopy and atomic force microscopy prior to choosing an anneal temperature for the MLD drive-in. Though the bulk SiGe wafers provided are …


The Development Of An Integrated Simulation Model On Understandings On The Interaction Between Electromagnetic Waves And Nanoparticles, Xiaojin Wang Jul 2019

The Development Of An Integrated Simulation Model On Understandings On The Interaction Between Electromagnetic Waves And Nanoparticles, Xiaojin Wang

Masters Theses & Specialist Projects

To investigate the interaction between nanoparticles and electromagnetic waves, a numerical simulation model based on FEM was built in this thesis. Numerical simulation is an important auxiliary research method besides experiments. The optical properties of nanoparticles consist of scattering, absorption, and extinction, and in the case of nanoparticle suspension, the transmission is also involved. This thesis addressed two typical applications based on the established model, one was regarding the nanofluids for solar energy harvesting, and the other was regarding the optical properties of atmospheric soot. In the case of the nanofluids solar energy harvesting, the established model provided a convenient …


A Brief Review Of Modern Uses Of Scattering Techniques, Daniel M. Wade, Dereth J. Drake Jun 2019

A Brief Review Of Modern Uses Of Scattering Techniques, Daniel M. Wade, Dereth J. Drake

Georgia Journal of Science

Thomson, Rayleigh, Mie, and Raman scattering are commonly used in several disciplines in science and engineering. The techniques involve the scattering of electromagnetic radiation or particles in a sample. This paper provides a brief history for each scattering method, describes the traditional laboratory approach for implementation, and discusses current uses and variations of these four techniques.


Lasers, Noah B. Caro Jun 2019

Lasers, Noah B. Caro

Physics

No abstract provided.


Generating Dark And Antidark Beams Using The Genuine Cross-Spectral Density Function Criterion, Milo W. Hyde Iv, Svetlana Avramov-Zamurovic Jun 2019

Generating Dark And Antidark Beams Using The Genuine Cross-Spectral Density Function Criterion, Milo W. Hyde Iv, Svetlana Avramov-Zamurovic

Faculty Publications

In this work, we demonstrate how to generate dark and antidark beams—diffraction-free partially coherent sources—using the genuine cross-spectral density function criterion. These beams have been realized in prior work using the source’s coherent-mode representation and by transforming a J0-Bessel correlated partially coherent source using a wavefront-folding interferometer. We generalize the traditional dark and antidark beams to produce higher-order sources, which have not been realized. We simulate the generation of these beams and compare the results to the corresponding theoretical predictions. The simulated results are found to be in excellent agreement with theory, thus validating our analysis. We discuss …


Rare Event Sampling In Applied Stochastic Dynamical Systems, Yiming Yu May 2019

Rare Event Sampling In Applied Stochastic Dynamical Systems, Yiming Yu

Dissertations

Predicting rare events is a challenging problem in many complex systems arising in physics, chemistry, biology, and materials science. Simulating rare events is often prohibitive in such systems due to their high dimensionality and the numerical cost of their simulation, yet analytical expressions for rare event probabilities are usually not available. This dissertation tackles the problem of approximation of the probability of rare catastrophic events in optical communication systems and spin-torque magnetic nanodevices. With the application of the geometric minimum action method, the probability of pulse position shifts or other parameter changes in a model of an actively mode-locked laser …


Slow Light With Interleaved P-N Junction To Enhance Performance Of Integrated Mach-Zehnder Silicon Modulators, Marco Passoni, Dario Gerace, Liam O'Faolain, Lucio Claudio Andreani May 2019

Slow Light With Interleaved P-N Junction To Enhance Performance Of Integrated Mach-Zehnder Silicon Modulators, Marco Passoni, Dario Gerace, Liam O'Faolain, Lucio Claudio Andreani

Cappa Publications

Slow light is a very important concept in nanophotonics, especially in the context of photonic crystals. In this work, we apply our previous design of band-edge slow light in silicon waveguide gratings [M. Passoni et al, Opt. Express 26, 8470 (2018)] to Mach-Zehnder modulators based on the plasma dispersion effect. The key idea is to employ an interleaved p-n junction with the same periodicity as the grating, in order to achieve optimal matching between the electromagnetic field profile and the depletion regions of the p-n junction. The resulting modulation efficiency is strongly improved as compared to common modulators based on …


Nonlinear Optical Studies Of Bulk And Thin Film Complex Materials, Joel E. Taylor May 2019

Nonlinear Optical Studies Of Bulk And Thin Film Complex Materials, Joel E. Taylor

LSU Doctoral Dissertations

Nonlinear optical studies of bulk and thin film materials provide a vast playground for physical and dynamical characterization. In this thesis, we have implemented experimental methods to probe novel phase transitions in single crystals using rotational anisotropic second harmonic generation (RASHG) and carrier dynamics in thin films with time-resolved pump-probe reflectivity. Furthermore, a novel low temperature ultra-high vacuum system coupled to nonlinear optics has been developed to extend lab capabilities. Doping (Bi1-xSbx)2Se3 with antimony, the surface electronic reconstruction near x=80% was identified with RASHG by deviations in the six-fold and three-fold polarization anisotropic …


An In-Situ Study Of The Aqueous Speciation Of Uranium (Vi) Under Hydrothermal Conditions, Diwash Dhakal May 2019

An In-Situ Study Of The Aqueous Speciation Of Uranium (Vi) Under Hydrothermal Conditions, Diwash Dhakal

MSU Graduate Theses

Rigorous study of the speciation distribution of uranyl-chloride bearing solutions under hydrothermal conditions is important to understand the transport mechanism of uranium underground, which is of uttermost interest to parties studying the geological uranium deposits and those studying the possibilities of geological repositories for spent nuclear waste. I report an in-situ Raman spectroscopic study of the speciation distribution of aqueous uranyl-chloride complexes upto 500°C conducted using a HDAC as the high PT spectroscopic cell. The samples studied contained the species UO22+, UO2Cl+, UO2Cl20 and UO2Cl3- …


The Challenge For Vision Of Fluctuating Real-World Illumination, David H. Foster May 2019

The Challenge For Vision Of Fluctuating Real-World Illumination, David H. Foster

MODVIS Workshop

No abstract provided.


Symmetry And Dopant Diffusion In Inverted Nanopyramid Arrays For Thin Crystalline Silicon Solar Cells, Seok Jun Han May 2019

Symmetry And Dopant Diffusion In Inverted Nanopyramid Arrays For Thin Crystalline Silicon Solar Cells, Seok Jun Han

Chemical and Biological Engineering ETDs

In this dissertation, we enhance the efficiency of thin flexible monocrystalline silicon solar cells by breaking symmetry in light trapping nanostructures and improving homogeneity in dopant concentration profile. These thin cells are potentially less expensive than conventional thick silicon cells by using less silicon material and making the cells more convenient to be handled when supported on polymer films. Moreover, these cells are widely applicable due to their flexibility and lightweight. However, for high efficiencies, these cells require effective light trapping and charge collection. We achieve these in cells based on 14-mm-thick free-standing silicon films with light-trapping arrays of nanopyramidal …


Photometry Of Star Clusters From Mendel Observatory, James Biegel May 2019

Photometry Of Star Clusters From Mendel Observatory, James Biegel

Across the Bridge: The Merrimack Undergraduate Research Journal

We have observed four open star clusters and three globular star clusters using Mendel Observatory’s 18” Richey-Chrétien telescope. Our photometry data was obtained using nonstandard R, G, and B filters. We plotted the results in the form of a Hertzsprung-Russell (H-R) diagram in an attempt to determine the so called “turn-off point” for the observed clusters, which is a strong indicator of age. Due to our limited sample size of stars in each cluster, we were not able to determine the turn-off points and obtain relative ages for the clusters. However, we find that the shapes of our H-R diagrams …


Application Of X-Ray Grating Interferometry To Polymer/Flame Retardant Blends In Additive Manufacturing, Omoefe Joy Kio May 2019

Application Of X-Ray Grating Interferometry To Polymer/Flame Retardant Blends In Additive Manufacturing, Omoefe Joy Kio

LSU Doctoral Dissertations

X-ray grating interferometry is a nondestructive tool for visualizing the internal structures of samples. Image contrast can be generated from the absorption of X-rays, the change in phase of the beam and small-angle X-ray scattering (dark-field). The attenuation and differential phase data obtained complement each other to give the internal composition of a material and large-scale structural information. The dark-field signal reveals sub-pixel structural detail usually invisible to the attenuation and phase probe, with the potential to highlight size distribution detail in a fashion faster than conventional small-angle scattering techniques. This work applies X-ray grating interferometry to the study of …


Topics In Three-Dimensional Imaging, Source Localization And Super-Resolution, Zhixian Yu May 2019

Topics In Three-Dimensional Imaging, Source Localization And Super-Resolution, Zhixian Yu

Physics & Astronomy ETDs

The realization that twisted light beams with helical phasefronts could carry orbital angular momentum (OAM) that is in excess of the photon's spin angular momentum (SAM) has spawned various important applications. One example is the design of novel imaging systems that achieve three-dimensional (3D) imaging in a single snapshot via the rotation of point spread function (PSF).

Based on a scalar-field analysis, a particular simple version of rotating PSF imagery, which was proposed by my advisor Dr. Prasad, furnishes a practical approach to perform 3D source localization using a spiral phase mask that generates a combination of Bessel vortex beams. …


High-Pressure High-Temperature Exploration Of Phase Boundaries Using Raman Spectroscopy, Jasmine Kashmir Hinton May 2019

High-Pressure High-Temperature Exploration Of Phase Boundaries Using Raman Spectroscopy, Jasmine Kashmir Hinton

UNLV Theses, Dissertations, Professional Papers, and Capstones

Metastability of states can provide interesting properties that may not be readily accessible in a material’s ground state. Many materials show high levels of polymorphism, indicating a rich energy landscape and a potential for metastable states. Melt crystallization techniques provide a potential route to these states. We use a resistively heated diamond anvil cell (DAC) with fine control of a system’s pressure and temperature to explore these systems. Raman spectroscopy is used to track subtle structural changes across phase boundaries. Organic systems, such as glycine and aspirin, were our initial interest due to their high polymorphism and reported low melting …


Modeling And Characterization Of A Ring-Resonator Based Silicon Photonic Sensor On Silicon-On-Insulator (Soi), Gwangho Choi May 2019

Modeling And Characterization Of A Ring-Resonator Based Silicon Photonic Sensor On Silicon-On-Insulator (Soi), Gwangho Choi

Graduate Theses - Physics and Optical Engineering

The purpose of this work is to build silicon photonic devices and verify their functionalities. In particular, the structure of a ring resonator (RR) is analyzed and applied to various silicon photonic application in sensing. Silicon waveguides, grating couplers, directional couplers, and RRs are fabricated on the silicon-on-insulator (SOI) wafer. Geometrical parameters and optical properties of the silicon devices are studied and also applied to the design of the aforementioned devices. The waveguide dimensions and, optical properties of the silicon waveguide such as dispersion and effective-index are examined. The RRs are made of a series of straight and bent waveguides …


Design, Fabrication, And Characterization Of Multilayer Hyperbolic Metamaterials, James Dilts May 2019

Design, Fabrication, And Characterization Of Multilayer Hyperbolic Metamaterials, James Dilts

Graduate Theses - Physics and Optical Engineering

Hyperbolic metamaterials (HMMs) show extreme anisotropy, acting as metals and dielectrics along orthogonal directions. They are designed using the effective medium theory (EMT) and can be fabricated using standard semiconductor processing techniques. Current techniques used to characterize the optical behavior of HMMs have a high complexity or are unable to robustly determine the complex permittivity tensor. We describe the details of a procedure to obtain a very low mean-squared-error (MSE) for extraction of permittivity from hyperbolic metamaterials using spectroscopic ellipsometry. We have verified our procedure by fabricating three different samples of various materials and fill factors designed to have a …


Generation And Use Of Femtosecond, Gigawatt, Near Infrared Laser Pulses From An Amplified, Mode-Locked, Ti:Sapphire Laser, David Anthony Valdés May 2019

Generation And Use Of Femtosecond, Gigawatt, Near Infrared Laser Pulses From An Amplified, Mode-Locked, Ti:Sapphire Laser, David Anthony Valdés

Optical Science and Engineering ETDs

This work modeled the early to middle successes achieved in the field of ultrafast, high peak power optics, beginning with the work of Nobel Prize winners Donna Strickland and Gérard Mourou in 1985. In our work, 100 fs light pulses of around 800 nm were generated by a Ti:Sapphire oscillator, then amplified to approximately 30 GW peak power using a chirped pulse amplification system that included regenerative and multi-pass amplifiers. As a verification of our pulses having high peak powers and ultrashort durations, they were then used to strike water, glass, and a Kerr Cell. Supercontinuum generation was observed as …


Topological Insulating States In Photonics And Acoustics, Xiang Ni May 2019

Topological Insulating States In Photonics And Acoustics, Xiang Ni

Dissertations, Theses, and Capstone Projects

Recent surge of interest in topological insulators, insulating in their interior but conducting at the surfaces or interfaces of different domains, has led to the discovery of a variety of new topological states, and their topological invariants are characterized by numerous approaches in the category of topological band theory. The common features shared by topological insulators include, the topological phase transition occurs if the bulk bandgap is formed due to the symmetries reduction, the topological invariants exist characterizing the global properties of the material and inherently robust to disorder and continuous perturbations irrespective of the local details. Most importantly, these …


Construction Of A Hyperspectral Camera Using Off-The-Shelf Parts And 3d-Printed Parts, Connor Heo May 2019

Construction Of A Hyperspectral Camera Using Off-The-Shelf Parts And 3d-Printed Parts, Connor Heo

Mechanical Engineering Undergraduate Honors Theses

The Arkansas Center for Space and Planetary Sciences (ACSPS) is working together with the Mechanical Engineering Department to build a modifiable camera with 3D-printed parts and off-the-shelf parts (sourced from Edmund Optics and Amazon). The design is to be readily changeable, primarily with the 3D printed parts, as to accommodate new ideas and functionalities in the future. Ultimately, the camera should be relatively cheap while maintaining functionality for proposed use cases. Earlier versions of the design will be tested extensively and rapidly updated in the ACSPS labs with benchtop testing. This will involve subjects with both visible and infrared emissions, …


Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu May 2019

Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu

Graduate Theses and Dissertations

Recently, various groups have demonstrated nano-scale engineering of nanostructures for optical to infrared wavelength plasmonic applications. Most fabrication technique processes, especially those using noble metals, requires an adhesion layer. Previously proposed theoretical work to support experimental measurement often neglect the effect of the adhesion layers. The first finding of this work focuses on the impact of the adhesion layer on nanoparticle plasmonic properties. Gold nanodisks with a titanium adhesion layer are investigated by calculating the scattering, absorption, and extinction cross-section with numerical simulations using a finite difference time domain (FDTD) method. I demonstrate that a gold nanodisk with an adhesive …


Large-Scale Atomistic Simulations Of Complex And Functional Properties Of Ferroic Materials, Raymond Thomas Walter May 2019

Large-Scale Atomistic Simulations Of Complex And Functional Properties Of Ferroic Materials, Raymond Thomas Walter

Graduate Theses and Dissertations

Ferroelectric (FE) nanostructures have attracted considerable attention as our abilities improve to synthesize them and to predict their properties by theoretical means. Depolarizing field effects at interfaces of FE heterostructures are particularly notable for causing topological defects such as FE vortices and negative dielectric responses in superlattices. In this thesis, I employ two large-scale atomistic techniques, the first-principles-based effective Hamiltonian (HEff) method and the linear-scaling three-dimensional fragment (LS3DF) method. I use these methods to explore optical rotation in FE vortices, electro-optic effects in FE vortices and skyrmions, and voltage amplification via negative capacitance in ferroelectric-paraelectric superlattices. We employ HEff in …


Optical Response Analysis Of Thz Photoconductive Antenna Using Comsol Multiphysics, Jose Isaac Santos Batista May 2019

Optical Response Analysis Of Thz Photoconductive Antenna Using Comsol Multiphysics, Jose Isaac Santos Batista

Electrical Engineering Undergraduate Honors Theses

A THz photoconductive antenna consists of antenna pads laid over a photoconductive substrate. These types of antennas are excited through the application of an optical pump (laser), which generates carriers inside the semiconductor. The acceleration and recombination of these carriers produce photocurrent that excites the antenna and generates THz pulse. This thesis focuses on analyzing the optical response of a photoconductive antenna, which consist of the interaction of the incident electric field of a laser pump with the radiating device. It develops the amplitude modulation process of a plane wave of light into a laser pump. It also takes into …


Optical Enhancement In Periodic Plasmonic Gratings For Sers And Metal-Semiconductor-Metal Photodetectors (Msm-Pds) Applications, Ahmad Aziz Darweesh May 2019

Optical Enhancement In Periodic Plasmonic Gratings For Sers And Metal-Semiconductor-Metal Photodetectors (Msm-Pds) Applications, Ahmad Aziz Darweesh

Graduate Theses and Dissertations

This dissertation is aimed to numerically study the effect of plasmonic grating electrodes on the efficiency of metal-semiconductor-metal photodetectors (MSM PDs) and the sensitivity of Surface Enhanced Raman Spectroscopy (SERS). This research can benefit many areas of nanoscience and optics, including plasmonic applications, such as, super lenses, nano-scale optical circuits, optical filters, surface plasmon enhanced photo-detectors solar cells, imaging sensors, charge-coupled devices (CCD), and optical-fiber communication systems. Several parameters, wire widths and thickness, gap space, taper angle, and the incident wavelength and angle, were investigated. The goal of this research is to utilize the plasmonic phenomenon by using plasmonic gratings …


The Population Densities Of Argon Metastable Levels, Nada Khogeer, Chelsy Gonzalez, Milka Nikolic Apr 2019

The Population Densities Of Argon Metastable Levels, Nada Khogeer, Chelsy Gonzalez, Milka Nikolic

Physics and Astronomy

In this experiment, we used the optical emission spectroscopy (OES) method to obtain the main properties of low temperature Argon plasma. The experiment was sustained in powers and pressures that ranges from 30-100 W and 15-100 mTorr. We used numerical methods for the Argon kinetic model to calculate metastable levels and resonant states for the first excited states in low temperature Argon plasma. By finding the ratio of two spectral lines and finding another ratio from a different upper energy level that goes down to the same two lower energy levels, we can construct a system of two nonlinear equations. …


Single Metalens For Generating Polarization And Phase Singularities Leading To A Reverse Flow Of Energy, Victor V. Kotlyar, Anton G. Nalimov, Sergey S. Stafeev, Liam O'Faolain Apr 2019

Single Metalens For Generating Polarization And Phase Singularities Leading To A Reverse Flow Of Energy, Victor V. Kotlyar, Anton G. Nalimov, Sergey S. Stafeev, Liam O'Faolain

Cappa Publications

Using Jones matrices and vectors, we show that a metasurface-based optical element composed of a set of subwavelength diffraction gratings, whose anisotropic transmittance is described by a matrix of polarization rotation by angle m, where is the polar angle, generate an mth order azimuthally or radially polarized beam, when illuminated by linearly polarized light, or an optical vortex with topological charge m, when illuminated by circularly polarized light. Such a converter performs a spin–orbit transformation, acting similarly to a liquid-crystal half-wave plate. Using the FDTD-aided numerical simulation, we show that uniform linearly or circularly polarized light passing through the …


Frequency Modulated Hybrid Photonic Crystal Laser By Thermal Tuning, Sharon M. Butler, Andrei P. Bakoz, Praveen K.J. Singaravelu, A. A. Liles, Ben O’Shaughnessy, E. A. Viktorov, Liam O'Faolain, Stephen P. Hegarty Apr 2019

Frequency Modulated Hybrid Photonic Crystal Laser By Thermal Tuning, Sharon M. Butler, Andrei P. Bakoz, Praveen K.J. Singaravelu, A. A. Liles, Ben O’Shaughnessy, E. A. Viktorov, Liam O'Faolain, Stephen P. Hegarty

Cappa Publications

We demonstrate frequency modulation (FM) in an external cavity (EC) III-V/silicon laser, comprising a reflective semiconductor optical amplifier (RSOA) and a silicon nitride (SiN) waveguide vertically coupled to a 2D silicon photonic crystal (PhC) cavity. The PhC cavity acts as a tunable narrowband reflector giving wavelength selectivity. The FM was achieved by thermo-optical modulation of the reflector via a p-n junction. Single-mode operation was ensured by the short cavity length, overlapping only one longitudinal laser mode with the reflector. We investigate the effect of reflector modulation theoretically and experimentally and predict a substantial tracking of the resonator by the laser …