Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physics

Interfacial Contact With Noble Metal - Noble Metal And Noble Metal - 2d Semiconductor Nanostructures Enhance Optical Activity, Ricardo Raphael Lopez Romo Dec 2019

Interfacial Contact With Noble Metal - Noble Metal And Noble Metal - 2d Semiconductor Nanostructures Enhance Optical Activity, Ricardo Raphael Lopez Romo

Graduate Theses and Dissertations

Noble metal nanoparticles and two-dimensional (2D) transition metal dichalcogenide (TMD) crystals offer unique optical and electronic properties that include strong exciton binding, spin-orbital coupling, and localized surface plasmon resonance. Controlling these properties at high spatiotemporal resolution can support emerging optoelectronic coupling and enhanced optical features. Excitation dynamics of these optical properties on physicochemically bonded mono- and few-layer TMD crystals with metal nanocrystals and two overlapping spherical metal nanocrystals were examined by concurrently (i) DDA simulations and (ii) far-field optical transmission UV-vis spectroscopic measurements. Initially, a novel and scalable method to unsettle van der Waals bonds in bulk TMDs to prepare …


Microextrusion 3d Printing Of Optical Waveguides And Microheaters, Edidiong Nseowo Udofia Aug 2019

Microextrusion 3d Printing Of Optical Waveguides And Microheaters, Edidiong Nseowo Udofia

Graduate Theses and Dissertations

The drive for smaller and more compact devices presents several challenges in materials and fabrication strategies. Although photolithography is a well-developed method for creating microdevices, the disparate requirements in fabrication strategies, material choices, equipment and process complexities have limited its applications. Microextrusion printing (μEP) provides a promising alternative for microfabrication. Compared to the traditional techniques, the attractions lie in the wide range of printable material choice, greater design freedom, fewer processing steps, lower cost for customized production, and the plurality of compatible substrates. However, while extrusion-based 3D printing processes have been successfully applied at the macroscale, this seeming simplicity belies …


Growth Of Indium Nitride Quantum Dots By Molecular Beam Epitaxy, Steven P. Minor Aug 2019

Growth Of Indium Nitride Quantum Dots By Molecular Beam Epitaxy, Steven P. Minor

Graduate Theses and Dissertations

Over the last decade, the evolution of the global consciousness in response to decreasing environmental conditions from global warming and pollution has led to an outcry for finding new alternative/clean methods for harvesting energy and determining ways to minimize energy consumption. III-nitride materials are of interest for optoelectronic and electronic device applications such as high efficiency solar cells, solid state lighting (LEDs), and blue laser (Blu-ray Technology) applications. The wide range of direct band gaps covered by its alloys (0.7eV-6.2eV) best illustrates the versatility of III-nitride materials. This wide range has enabled applications extending from the ultraviolet to the near …


Possible Schemes For A Single Photon Switch, Hemlin Swaran Rag Aug 2019

Possible Schemes For A Single Photon Switch, Hemlin Swaran Rag

Graduate Theses and Dissertations

I consider the effectiveness of a single control photon to route a target photon using two processes: the first one uses the transient excitation of a two-level system and the second one which uses the permanent population transfer in a three-level Λ-system to route the target photon. In the absence of a single control photon and when the system has additional decay channels, I find ways to optimize the success probability of routing with an increasing number of photons in the control field.


Polarization Properties Of Airy And Ince-Gaussian Laser Beams, Sean Michael Nomoto Aug 2019

Polarization Properties Of Airy And Ince-Gaussian Laser Beams, Sean Michael Nomoto

Graduate Theses and Dissertations

The description of polarization states of laser light as linear, circular polarization within the paraxial scalar wave approximation is adequate for most applications. However, this description falls short when considering laser light as an electromagnetic wave satisfying Maxwell's equations. An electric field with a constant unit vector for direction of the field and a space dependent complex scalar amplitude in the paraxial wave approximation does not satisfy Maxwell equations which, in general, requires all three Cartesian components of electric and magnetic fields associated for a nonzero laser beam to be nonzero.

Physical observation of passing a linearly polarized laser through …


Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu May 2019

Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu

Graduate Theses and Dissertations

Recently, various groups have demonstrated nano-scale engineering of nanostructures for optical to infrared wavelength plasmonic applications. Most fabrication technique processes, especially those using noble metals, requires an adhesion layer. Previously proposed theoretical work to support experimental measurement often neglect the effect of the adhesion layers. The first finding of this work focuses on the impact of the adhesion layer on nanoparticle plasmonic properties. Gold nanodisks with a titanium adhesion layer are investigated by calculating the scattering, absorption, and extinction cross-section with numerical simulations using a finite difference time domain (FDTD) method. I demonstrate that a gold nanodisk with an adhesive …


Large-Scale Atomistic Simulations Of Complex And Functional Properties Of Ferroic Materials, Raymond Thomas Walter May 2019

Large-Scale Atomistic Simulations Of Complex And Functional Properties Of Ferroic Materials, Raymond Thomas Walter

Graduate Theses and Dissertations

Ferroelectric (FE) nanostructures have attracted considerable attention as our abilities improve to synthesize them and to predict their properties by theoretical means. Depolarizing field effects at interfaces of FE heterostructures are particularly notable for causing topological defects such as FE vortices and negative dielectric responses in superlattices. In this thesis, I employ two large-scale atomistic techniques, the first-principles-based effective Hamiltonian (HEff) method and the linear-scaling three-dimensional fragment (LS3DF) method. I use these methods to explore optical rotation in FE vortices, electro-optic effects in FE vortices and skyrmions, and voltage amplification via negative capacitance in ferroelectric-paraelectric superlattices. We employ HEff in …


Optical Enhancement In Periodic Plasmonic Gratings For Sers And Metal-Semiconductor-Metal Photodetectors (Msm-Pds) Applications, Ahmad Aziz Darweesh May 2019

Optical Enhancement In Periodic Plasmonic Gratings For Sers And Metal-Semiconductor-Metal Photodetectors (Msm-Pds) Applications, Ahmad Aziz Darweesh

Graduate Theses and Dissertations

This dissertation is aimed to numerically study the effect of plasmonic grating electrodes on the efficiency of metal-semiconductor-metal photodetectors (MSM PDs) and the sensitivity of Surface Enhanced Raman Spectroscopy (SERS). This research can benefit many areas of nanoscience and optics, including plasmonic applications, such as, super lenses, nano-scale optical circuits, optical filters, surface plasmon enhanced photo-detectors solar cells, imaging sensors, charge-coupled devices (CCD), and optical-fiber communication systems. Several parameters, wire widths and thickness, gap space, taper angle, and the incident wavelength and angle, were investigated. The goal of this research is to utilize the plasmonic phenomenon by using plasmonic gratings …