Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

3d Plasmonic Design Approach For Efficient Transmissive Huygens Metasurfaces, Bryan M. Adomanis, D. Bruce Burckel, Michael A. Marciniak Jul 2019

3d Plasmonic Design Approach For Efficient Transmissive Huygens Metasurfaces, Bryan M. Adomanis, D. Bruce Burckel, Michael A. Marciniak

Faculty Publications

In this paper we present a design concept for 3D plasmonic scatterers as high- efficiency transmissive metasurface (MS) building blocks. A genetic algorithm (GA) routine partitions the faces of the walls inside an open cavity into a M x N grid of voxels which can be either covered with metal or left bare, and optimizes the distribution of metal coverage needed to generate electric and magnetic modes of equal strength with a targeted phase delay (Φt) at the design wavelength. Even though the electric and magnetic modes can be more complicated than typical low order modes, with their spectral overlap …


Design, Fabrication, And Characterization Of Multilayer Hyperbolic Metamaterials, James Dilts May 2019

Design, Fabrication, And Characterization Of Multilayer Hyperbolic Metamaterials, James Dilts

Graduate Theses - Physics and Optical Engineering

Hyperbolic metamaterials (HMMs) show extreme anisotropy, acting as metals and dielectrics along orthogonal directions. They are designed using the effective medium theory (EMT) and can be fabricated using standard semiconductor processing techniques. Current techniques used to characterize the optical behavior of HMMs have a high complexity or are unable to robustly determine the complex permittivity tensor. We describe the details of a procedure to obtain a very low mean-squared-error (MSE) for extraction of permittivity from hyperbolic metamaterials using spectroscopic ellipsometry. We have verified our procedure by fabricating three different samples of various materials and fill factors designed to have a …


Quartic Metamaterials: The Inverse Method, Perturbations, And Bulk Optical Neutrality, Thomas Mulkey Apr 2019

Quartic Metamaterials: The Inverse Method, Perturbations, And Bulk Optical Neutrality, Thomas Mulkey

Honors College Theses

A primary goal of photonics is designing material structures that support predetermined electromagnetic field distributions. We have developed an inverse method to determine material parameters for a quartic metamaterial from six desired plane waves. This work inspired us to study how perturbations to the parameters can result in optical neutrality.


Control Of Energy Transfer And Molecular Energetics Using Photonic Nanostructures, Rahul Deshmukh Feb 2019

Control Of Energy Transfer And Molecular Energetics Using Photonic Nanostructures, Rahul Deshmukh

Dissertations, Theses, and Capstone Projects

In the last three decades, the design and fabrication of different types of photonic nanostructures have allowed us to control and enhance the interaction of light (or photons) with matter (or excitons). In this work, we demonstrate the use of three different nanostructures to control different material properties. The design and fabrication of the nanostructures is discussed along with the results obtained using characterization techniques of angle-resolved white light reflectivity and transmission, and time-resolved and steady-state photoluminescence experiments. Specifically, we demonstrate the use of Optical Topological Transitions (OTT) in metamaterials to show enhanced efficiency in the non-radiative transfer of energy …


Wavelength-Selective Metamaterial Absorber And Emitter, Zhigang Li Jan 2019

Wavelength-Selective Metamaterial Absorber And Emitter, Zhigang Li

Doctoral Dissertations

"Electromagnetic absorbers and emitters have been attracting interest in lots of fields, which are significantly revitalized because of the novel properties brought by the development of the metamaterials, the artificially designed materials. Metamaterials broadens the approaches to design the electromagnetic absorbers and emitters, making it possible to obtain the perfect absorption or emission at the wavelengths covering a wide range. Metamaterial absorbers and emitters are promising for various applications, including solar thermal-photovoltaics and thermal-photovoltaics for energy harvesting, chemical and biomedical sensors, nanoscale imaging and color printing. This work focuses on three aspects (materials, structures and design methods) to improve the …