Open Access. Powered by Scholars. Published by Universities.®

Inorganic Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 1314

Full-Text Articles in Inorganic Chemistry

High Resolution Mass Spectrometry As A Platform For The Analysis Of Polyoxometalates, Their Solution Phase Dynamics, And Their Biological Interactions., Daniel T. Favre Mar 2024

High Resolution Mass Spectrometry As A Platform For The Analysis Of Polyoxometalates, Their Solution Phase Dynamics, And Their Biological Interactions., Daniel T. Favre

Doctoral Dissertations

Polyoxometalates (POMs) are a class of inorganic molecule of increasing interest to the inorganic, bioinorganic and catalytic communities among many others. While their prevalence in research has increased, tools and methodologies for the analysis of their fundamental characteristics still need further development. Decavanadate (V10) specifically has been postulated to have several unique properties that have not been confirmed independently. Mass spectrometry (MS) and its ability to determine the composition of solution phase species by both mass and charge is uniquely well suited to the analysis of POMs. In this work we utilized high-resolution mass spectrometry to characterize V10 in aqueous …


Nitrene-Transfer Chemistry To C-H And C═C Bonds Mediated By Triangular Coinage Metal Platforms Supported By Triply Bridging Pnictogen Elements Sb(Iii) And Bi(Iii), Meenakshi Sharma, Reece M. Fritz, Joseph O. Adebanjo, Zhou Lu, Thomas R. Cundari, Mohammad A. Omary, Amitava Choudhury, Pericles Stavropoulos Mar 2024

Nitrene-Transfer Chemistry To C-H And C═C Bonds Mediated By Triangular Coinage Metal Platforms Supported By Triply Bridging Pnictogen Elements Sb(Iii) And Bi(Iii), Meenakshi Sharma, Reece M. Fritz, Joseph O. Adebanjo, Zhou Lu, Thomas R. Cundari, Mohammad A. Omary, Amitava Choudhury, Pericles Stavropoulos

Chemistry Faculty Research & Creative Works

Tripodal Ligands (TMG3trphen-E) That Feature Heavy Pnictogen Elements (E = Sb(III), Bi(III)) And Tetramethylguanidinyl (TMG) Arms Have Been Explored In Stabilizing Cu(I) And Ag(I) Sites And Facilitating Nitrene-Transfer Chemistry. Compounds [(TMG3trphen-E)M3(Μ-X)3] (M = Cu(I), Ag(I); X = Cl, Br, I) Have Been Generated Upon Extraction Of M3(Μ-X)3 Units From MX Sources, Exhibiting Support Of The Crown-Shaped M3(Μ-X)3 Fragment By M-NTMG Bonds And Triply Bridging E → M3 Interactions. Orbital Interactions Between Cu(I) Sites And NTMG Residues Are More Dominant Than Sb/Bi → Cu3 Donor Interactions Between The Sb 5s Or Bi 6s Orbitals And Admixed Cu 4s/3d Orbitals, With Larger …


Mechanistic Investigation Of C—C Bond Activation Of Phosphaalkynes With Pt(0) Complexes, Roberto M. Escobar, Abdurrahman C. Ateşin, Christian Müller, William D. Jones, Tülay Ateşin Mar 2024

Mechanistic Investigation Of C—C Bond Activation Of Phosphaalkynes With Pt(0) Complexes, Roberto M. Escobar, Abdurrahman C. Ateşin, Christian Müller, William D. Jones, Tülay Ateşin

Research Symposium

Carbon–carbon (C–C) bond activation has gained increased attention as a direct method for the synthesis of pharmaceuticals. Due to the thermodynamic stability and kinetic inaccessibility of the C–C bonds, however, activation of C–C bonds by homogeneous transition-metal catalysts under mild homogeneous conditions is still a challenge. Most of the systems in which the activation occurs either have aromatization or relief of ring strain as the primary driving force. The activation of unstrained C–C bonds of phosphaalkynes does not have this advantage. This study employs Density Functional Theory (DFT) calculations to elucidate Pt(0)-mediated C–CP bond activation mechanisms in phosphaalkynes. Investigating the …


Luminescent Group 11 Metal (I) Chalcogen Clusters With A Conjugated Diphosphine Ligand, Kai Yu Jeffrey Li Jan 2024

Luminescent Group 11 Metal (I) Chalcogen Clusters With A Conjugated Diphosphine Ligand, Kai Yu Jeffrey Li

Electronic Thesis and Dissertation Repository

Polynuclear Au (I) complexes exhibit rich photochemical properties and have the potential to find applications as molecular sensors, switches, or energy storage devices. Although dinuclear Au (I) complexes with bridging diphosphines have been extensively examined, most of those reported do not contain rigid-diphosphine ligands.

This thesis examines how the rigid diphosphine, 4,6-bis(diphenylphosphino)dibenzofuran (DBFDP) can be incorporated for the controlled assembly of photoluminescent gold (I) metal – chalcogenolate (chalcogenolate = RS-, RSe-; R = organic moiety) and gold (I) chalcogenide (chalcogenide = S2-, Se2-) bimetallic complexes. In these studies, the chalcogen …


Exploring The Reactivity Of Metal-Ligand Cooperative Complexes With Dioxazolones, Terminal Alkynes, And 2-Ethynylbenzyl Alcohol, Megan A. Hoffer Miss Jan 2024

Exploring The Reactivity Of Metal-Ligand Cooperative Complexes With Dioxazolones, Terminal Alkynes, And 2-Ethynylbenzyl Alcohol, Megan A. Hoffer Miss

Electronic Thesis and Dissertation Repository

N-Acyl ketenimines were attempted to be synthesized catalytically by [Ru(Cp)(PPh2NPh2)(NCMe)]PF6 with phenylacetylene and 3-phenethynyl-1,2,4-dioxazol-5-one. Trapping agents were employed to identify the major product of the reaction, as many products were formed. [Ru(Cp)(PPh2NPh2)(NCMe)]PF6 reacts with 3-phenethynyl-1,2,4-dioxazol-5-one generating an isocyanate via the Curtius rearrangement, confirmed by a forced Curtius rearrangement with 3-phenethynyl-1,2,4-dioxazol-5-one and 1,2,4-triazole. Rates of vinylidene formation using [Ru(Cp)(PPh2NPh2)(NCMe)]PF6 and various terminal alkynes of different sterics and electronics were evaluated using a Hammett analysis for and simple rate comparisons. …


A Comparative Study Of Cationic Copper(I) Reagents Supported By Bipodal Tetramethylguanidinyl-Containing Ligands As Nitrene-Transfer Catalysts, Suraj Kumar Sahoo, Brent Harfmann, Himanshu Bhatia, Harish Singh, Srikanth Balijapelly, Amitava Choudhury, Pericles Stavropoulos Jan 2024

A Comparative Study Of Cationic Copper(I) Reagents Supported By Bipodal Tetramethylguanidinyl-Containing Ligands As Nitrene-Transfer Catalysts, Suraj Kumar Sahoo, Brent Harfmann, Himanshu Bhatia, Harish Singh, Srikanth Balijapelly, Amitava Choudhury, Pericles Stavropoulos

Chemistry Faculty Research & Creative Works

The Bipodal Compounds [(TMG2biphenN-R)CuI-NCMe](PF6) (R = Me, Ar (4-CF3Ph-)) And [(TMG2biphenN-Me)CuI-I] Have Been Synthesized With Ligands That Feature A Diarylmethyl- And Triaryl-Amine Framework And Superbasic Tetramethylguanidinyl Residues (TMG). The Cationic Cu(I) Sites Mediate Catalytic Nitrene-Transfer Reactions Between The Imidoiodinane PhI = NTs (Ts = Tosyl) And A Panel Of Styrenes In MeCN, To Afford Aziridines, Demonstrating Comparable Reactivity Profiles. The Copper Reagents Have Been Further Explored To Execute C-H Amination Reactions With A Variety Of Aliphatic And Aromatic Hydrocarbons And Two Distinct Nitrene Sources PhI = NTs And PhI = NTces (Tces = 2,2,2-Trichloroethylsulfamate) In Benzene/HFIP (10:2 V/v). Good Yields …


Amination Of 2-Bromo-6-Methylaminopyridine, Matthew H. Elterman Jan 2024

Amination Of 2-Bromo-6-Methylaminopyridine, Matthew H. Elterman

Honors College Theses

Extended metal atom chains (EMACs) represent molecular structures comprising a linear arrangement of metal ions, accompanied by supporting ligands. These compounds possess intriguing properties, yet remain understudied, drawing interest from diverse fields such as physics. However, synthesizing these multimetallic complexes poses significant challenges due to their intricate nature and specificity. Bridging ligands like silyl aminopyridine (SAP) and dipyridyl amine (DAP) have been utilized successfully to support EMACs, with SAP's application in this context being limited to a single published case, highlighting the urgent need for stabilization. This project aims to address this challenge through the synthesis of a novel scaffolded …


Conversion Of Cellulose To 5-Hydroxymethylfurfural As Sustainable Energy: A Bibliometric Analysis By Vosviewer, Royyan Faradis, Ardiansyah Bagus Suryanto, Irmina Kris Murwani Dec 2023

Conversion Of Cellulose To 5-Hydroxymethylfurfural As Sustainable Energy: A Bibliometric Analysis By Vosviewer, Royyan Faradis, Ardiansyah Bagus Suryanto, Irmina Kris Murwani

Journal of Environmental Science and Sustainable Development

The developments of the global economy and society impact resources and the environment. This condition requires an alternative to find new, safe, and sustainable energy types. The conversion of cellulose to 5-hydroxymethylfurfural (5-HMF) has become a significant area of research interest. It has triggered the development of research directions related to biomass and energy because it can be an intermediary source for making polymers, solvents, pharmaceuticals, and biofuels. The primary objective of this study is to give a bibliometric analysis of 1753 reports on the development of research on cellulose conversion to 5-HMF from 1965 to 2021. The data were …


Microplate-Like Metal Pyrophosphate Engineered On Ni-Foam Towards Multifunctional Electrode Material For Energy Conversion And Storage, Rishabh Srivastava Dec 2023

Microplate-Like Metal Pyrophosphate Engineered On Ni-Foam Towards Multifunctional Electrode Material For Energy Conversion And Storage, Rishabh Srivastava

Electronic Theses & Dissertations

High clean energy demand, dire need for sustainable development, and low carbon footprints are the few intuitive challenges, leading researchers to aim for research and development for high-performance energy devices. The development of materials used in energy devices is currently focused on enhancing the performance, electronic properties, and durability of devices. Tunning the attributes of transition metals using pyrophosphate (P2O7) ligand moieties can be a promising approach to meet the requirements of energy devices such as water electrolyzers and supercapacitors, although such a material’s configuration is rarely exposed for this purpose of study.

Herein, we grow …


Enhanced Mechanical Strength Of Soybean Oil-Based Non-Isocyanate Polyurethane Adhesive For Wood Application By Introducing Nanofillers, Vatsal Chaudhari Dec 2023

Enhanced Mechanical Strength Of Soybean Oil-Based Non-Isocyanate Polyurethane Adhesive For Wood Application By Introducing Nanofillers, Vatsal Chaudhari

Electronic Theses & Dissertations

Polyurethane (PU) is a versatile material that finds extensive use in various industries including bedding, construction, automotive, and packaging. Historically, this particular polymer relied significantly on petrochemical resources, a practice that was considered to have negative environmental impacts. The conventional method for preparing PU involves the use of isocyanate, which is a disadvantage due to its negative impact on the environment and human health. The resolution of this problem entails identifying an appropriate substitute for petroleum-derived products that minimize their impact on both the environment and human health. The researchers earlier utilized soybean oil, for the formulation of PUs in …


Optimization Of Transition-Metal Inclusive Carbon Aerogels For Electrochemical Energy Applications, Allen Dalton Davis Dec 2023

Optimization Of Transition-Metal Inclusive Carbon Aerogels For Electrochemical Energy Applications, Allen Dalton Davis

Electronic Theses & Dissertations

The ever-growing need for energy alongside rising concerns for climate change demands the development of renewable energy technologies. Hydrogen fuel cells are a promising technology that can serve to either supplement energy generation or act as a lone power source. Yet for these devices to be truly green, the hydrogen that serves as fuel must be procured from a renewable resource. Electrolytic water splitting is a process that allows for the dissociation of water into H2 and O2. For this process to be practical, the electrolyzer needs to demonstrate high efficiency and stability, as well as a …


Exploring Soybean Oil-Based Polyol And Effect Of Non-Halogenated Flame Retardants In Rigid Polyurethane Foam, Sahithi Kondaveeti Dec 2023

Exploring Soybean Oil-Based Polyol And Effect Of Non-Halogenated Flame Retardants In Rigid Polyurethane Foam, Sahithi Kondaveeti

Electronic Theses & Dissertations

To address the increasing demand for sustainable biomaterials due to the depletion of fossil fuel resources and growing environmental concerns, a new type of biodegradable and environmentally friendly rigid polyurethane foam (RPUF) has been synthesized. These foams are derived from chemically modified soybean oil-based polyol obtained from soybean oil by epoxidation followed by a ring-opening reaction. Polyurethane foam is generally used in construction, furniture, and automobile industries but is highly flammable and releases toxic gases and smoke during combustion. In this study, a highly efficient synergistic effect halogen-free flame-retardant (FR) melamine salt, 2-carboxyethyl(phenyl)phosphinic acid melamine salt (CMA) was synthesized from …


Hydrothermal Synthesis Of First-Row Transition Metal Polyanions Towards The Design Of Frustrated Magnetic Materials, Megan Smart Dec 2023

Hydrothermal Synthesis Of First-Row Transition Metal Polyanions Towards The Design Of Frustrated Magnetic Materials, Megan Smart

All Dissertations

Novel modern materials are constantly being discovered as humanity seeks constantly better improvement to the optics and electronics around us, from lasers used in medical therapies to the magnets and supercomputing chips in our phones. Inorganic oxides commonly draw inspiration from naturally occurring minerals to template new discoveries through substitution of similarly behaving elements with the goal of inducing certain desired properties, such as ferroelectricity or creating the elusive quantum spin liquid. While many minerals are silicates, its periodic table neighbor germanium(IV) has a rich and under-explored crystal chemistry that could contain many new structures and magnetic materials. Another common …


Sterically Encumbering Ligands For The Synthesis And Stabilization Of Iron Nitride And Iron Oxo Compounds, Asiel Mena Dec 2023

Sterically Encumbering Ligands For The Synthesis And Stabilization Of Iron Nitride And Iron Oxo Compounds, Asiel Mena

Open Access Theses & Dissertations

The study of iron-nitrides has been found to be very attractive due to their potential role in processes like Haber-Bosch and nitrogen fixation by nitrogenase. The role of iron-nitrides in these processes is yet not well understood, and the fact that only handful of terminal iron-nitrides have been isolated or spectroscopically detected motivates us to study this type of systems, since much remains to be learned about the electronic and structural factors that affect the chemistry of the Feâ?¡N bond. Recently in our group, by using a super-bulky guanidinate ligand (LAr*), the obtention of an iron-nitride ([LAr*]FeN(py) (LAr* = (Ar*N)2C(NCtBu2), …


Scalable Solution Processing Of Niox Nanoparticles., Peter James Armstrong Dec 2023

Scalable Solution Processing Of Niox Nanoparticles., Peter James Armstrong

Electronic Theses and Dissertations

Perovskite solar cells (PSCs) are a promising alternative to silicon-based photovoltaics. However, PSCs face several challenges due to shortcomings in their stability, module efficiency, and scaled production. Although PSCs is still a young field of research, significant attention has been given to demonstrating power conversion efficiencies that are on par with traditional silicon. With that target reached, converting the laboratory demonstration into practical materials to increase access and abundance of solar energy are among the next large targets for the field. This comes with material challenges for perovskite and their companion charge transport layers (CTLs). Among the charge transport materials …


Antibacterial Testing On Silver/Zinc Oxide Nanoparticles/Organoclay Reinforced Chitosan Biocomposites, Lisna Junaeni Muiz, Ariadne Lakshmidevi Juwono, Zulkarnaen Paputungan, Yuni Krisyuningsih Krisnandi Sep 2023

Antibacterial Testing On Silver/Zinc Oxide Nanoparticles/Organoclay Reinforced Chitosan Biocomposites, Lisna Junaeni Muiz, Ariadne Lakshmidevi Juwono, Zulkarnaen Paputungan, Yuni Krisyuningsih Krisnandi

Makara Journal of Science

Herein, bionanocomposites of chitosan (CS)/silver nanoparticle/organoclay/zinc oxide nanoparticle (CS/Ag/OC/ZnO) were prepared for antibacterial food packaging. This study examines the time variation in the AgNP synthesis method by comparing local (74˗85% deacetylated) and commercial chitosan (75%˗85% deacetylated) as a reducing and capping agent and seeks to reconstruct the optimum ratio formulations of AgNPs and ZnONPs in bionanocomposites for food packaging. The results reveal that the synthesis of AgNPs was successfully carried out using a local chitosan solution as a reducing and capping agent. The CS/Ag/OC/ZnO films exhibit structural, mechanical, and optical properties suitable for food packaging and antibacterial activity on Staphylococcus …


Characterization And Electrolysis Of Zn And Cu 2,6-Diacetylpyridine Bis(2-Hydrazinopyridine), Bailee G. Duff, Christine Phipps, Craig Grapperhaus Sep 2023

Characterization And Electrolysis Of Zn And Cu 2,6-Diacetylpyridine Bis(2-Hydrazinopyridine), Bailee G. Duff, Christine Phipps, Craig Grapperhaus

The Cardinal Edge

With increasing demands for fuel and concerns over climate change, the search for sustainable energy sources is ever growing. Hydrogen is a potential solution to these issues, as it is clean, recyclable, and efficient. However, hydrogen must be generated, unlike other fuel sources that are naturally ready for use. The most sustainable method for hydrogen production involves water electrolysis, as no pollution is generated. The water splitting process contains a cathodic hydrogen evolution reaction (HER) and an anodic oxygen evolution reaction (OER). These reactions require a catalyst to overcome the kinetic barrier present and meet the high voltage requirements for …


Improved Stoichiometric Synthesis Of Ccc-Nhc Pincer Rh Complexes And Catalytic Activity Towards Dehydrogenative Silylation And Hydrosilylation Of Alkenes, Enock Amoateng Aug 2023

Improved Stoichiometric Synthesis Of Ccc-Nhc Pincer Rh Complexes And Catalytic Activity Towards Dehydrogenative Silylation And Hydrosilylation Of Alkenes, Enock Amoateng

Theses and Dissertations

N-Heterocyclic carbenes (NHCs) have attracted growing interest not only as successful ancillary ligands in a wide variety of transition-metal-catalyzed reactions but have also shown to offer photophysical and electrochemical properties. The metalation/transmetalation strategy using [Zr(NMe2)4] as initial metalating reagent offers an efficient approach to the preparation of CCC-NHC pincer complexes of the late transition metals such as Rh and Ir. In the process of investigating an intermediate and the mechanism of the metalation/transmetalation to Rh sequence, a mixed valent bimetallic CCC-NHC pincer Rh complex with two chloro ligands bridged between a [(CCC-NHC)Rh(III)] and a [Rh(I)(COD)] fragment …


Comprehensive Studies Of Magnetic Properties Of Metal-Organic Frameworks And Molecular Compounds, Pagnareach Tin Aug 2023

Comprehensive Studies Of Magnetic Properties Of Metal-Organic Frameworks And Molecular Compounds, Pagnareach Tin

Doctoral Dissertations

Single-ion magnets (SIMs) are at the forefront of molecular electronic spin magnets with potential applications in magnetic memory storage devices. However, the magnetic properties of the SIMs are yet to be completely understood, especially the magnetic properties of large anisotropy systems. A part of this dissertation is to utilize optical and neutron spectroscopies such as far-IR magneto-spectroscopy (FIRMS) and inelastic neutron scattering (INS) to quantify the anisotropy and study the phonon properties of the SIMs as two-dimensional (2-D) metal-organic frameworks (MOFs) or coordination polymer (CP), and a molecular magnet. In addition, ab initio calculations are used to understand the origin …


Redox-Active Polymerization Catalysts And Their Applications, Nicholas M. Shawver Aug 2023

Redox-Active Polymerization Catalysts And Their Applications, Nicholas M. Shawver

Masters Theses

Traditional catalyst systems are reliable means to produce polymers with well-defined architectures and thermomechanical properties; however, they are often limited by a narrow monomer scope and their ability access few, if any, advanced polymer architectures. To address this limitation, a new class of catalysts have recently emerged that feature redox-active moieties that may access advanced architectures through catalyst electronic modulation that arises from redox events occurring on the ligand scaffold or at the active metal center itself. For example, researchers have explored the ability of redox-active catalysts to impart “on-off” kinetic control during ring-opening polymerizations and their ability to access …


Leveraging Non-Covalent Interactions Between Small Organic Molecules And Inorganic Scaffolds In The Design Of Advanced Materials, Jonathan Lefton Jul 2023

Leveraging Non-Covalent Interactions Between Small Organic Molecules And Inorganic Scaffolds In The Design Of Advanced Materials, Jonathan Lefton

Chemistry Theses and Dissertations

Powder diffraction is a powerful tool for studying crystal structures, especially as it relates to interactions of small organic molecules with inorganic compounds. The first part of this dissertation involves small organic ligands interacting with metal-organic framework, MOF-74. The first and simplest iteration involves the crystal structure solution of a neat, liquid loading of n-propylmercaptan to the open metal sites within the MOF-74 pores. Later studies investigate the leveraging of a similarly sized bitopic ligand in the solution loading of 1,2-ethanedithiol, which results in the amorphization of MOF-74. Having no crystallinity, amorphous or severely defected materials can be a …


Rhodium-Catalyzed Asymmetric Synthesis Of P-P And P-C Bonds, Sarah T. Chachula Jul 2023

Rhodium-Catalyzed Asymmetric Synthesis Of P-P And P-C Bonds, Sarah T. Chachula

Dartmouth College Ph.D Dissertations

Chapter 1: Synthesis, Structure, Dynamics, and Enantioface-Selective η3-Benzyl Coordination in the Chiral Rhodium Complexes Rh(diphos*)(η3-CH2Ph) Abstract: The rhodium benzyl complexes Rh(diphos*)(η3-CH2Ph) (1-14, diphos* = chiral bis(phosphine)) were prepared either by treatment of Rh(COD)(η3-CH2Ph) (15, COD = 1,5-cyclooctadiene) with diphos*, or from the reaction of [Rh(diphos*)(Cl)]2 (16- 20) with PhCH2MgCl. For C2-symmetric diphos*, observation of one set of NMR signals for complexes 1-12 suggested that the two diastereomers in which different 3-benzyl enantiofaces were coordinated to rhodium interconverted rapidly on the NMR time scale via suprafacial shifts; observation of five inequivalent aryl 1H NMR signals showed that antarafacial shifts were slow …


From Waste To Energy: The Electrochemical Reduction Of Co2 Using Recycled Nanostructured Catalysts, Ibrahim Badawy Jul 2023

From Waste To Energy: The Electrochemical Reduction Of Co2 Using Recycled Nanostructured Catalysts, Ibrahim Badawy

Theses and Dissertations

The reduction of carbon dioxide (CO2RR) using electrochemistry is a promising solution for the burgeoning global energy crisis. The overall vision of its implementation relies on renewable energy sources to power the reaction creating carbon neutral products and effectively closing the carbon cycle. Research in this field has come a long way since its inception in the mid-1900s. However, there remain significant hurdles and important considerations to overcome in order to reach full commercialization. Most electrocatalysts tested for CO2RR have been designed solely for maximum performance while ignoring the environmental consequences if such a material were …


Cationic Divalent Metal Sites (M = Mn, Fe, Co) Operating As Both Nitrene-Transfer Agents And Lewis Acids Toward Mediating The Synthesis Of Three- And Five-Membered N-Heterocycles, Suraj Kumar Sahoo, Brent Harfmann, Lin Ai, Qiuwen Wang, Sudip Mohapatra, Amitava Choudhury, Pericles Stavropoulos Jul 2023

Cationic Divalent Metal Sites (M = Mn, Fe, Co) Operating As Both Nitrene-Transfer Agents And Lewis Acids Toward Mediating The Synthesis Of Three- And Five-Membered N-Heterocycles, Suraj Kumar Sahoo, Brent Harfmann, Lin Ai, Qiuwen Wang, Sudip Mohapatra, Amitava Choudhury, Pericles Stavropoulos

Chemistry Faculty Research & Creative Works

The tripodal compounds [(TMG3trphen)MII-solv](PF6)2 (M = Mn, Fe, Co; solv = MeCN, DMF) and bipodal analogues [(TMG2biphen)MII(NCMe)x](PF6)2 (x = 3 for Mn, Fe; x = 2 for Co) and [(TMG2biphen)MIICl2] have been synthesized with ligands that feature a triaryl- or diarylmethyl-amine framework and superbasic tetramethylguanidinyl residues (TMG). The dicationic M(II) sites mediate catalytic nitrene-transfer reactions between the imidoiodinane PhI═NTs (Ts = tosyl) and a panel of styrenes in MeCN to afford aziridines and low yields of imidazolines (upon …


N–((2–Acetylphenyl)Carbamothioyl)Benzamide: Synthesis, Crystal Structure Analysis, And Theoretical Studies, Akin Oztaslar, Hakan Arslan Jun 2023

N–((2–Acetylphenyl)Carbamothioyl)Benzamide: Synthesis, Crystal Structure Analysis, And Theoretical Studies, Akin Oztaslar, Hakan Arslan

Karbala International Journal of Modern Science

N–((2–Acetylphenyl)carbamothioyl)benzamide has been synthesized and characterized. The molecular conformation of the investigated compound is stabilized by C16–H16B⋅⋅⋅O2i (i: 1+x, y, z) intermolecular and C14–H14⋅⋅⋅S1, N2–H2⋅⋅⋅O2, and N2–H2⋅⋅⋅O1 intramolecular H–bonds. All DFT calculations have been implemented at the B3LYP level with the 6–311G(d,p) basis set. The optimized molecular structure parameters have been compared with the experimental one in the solid phase. The energy gap, global chemical reactivity descriptor parameters, MEP, Fukui functions, DoS, NLO, and NBO analysis were also computed and investigated. The intermolecular interactions and their energies are evaluated using Hirshfeld surface and energy framework analyses. To determine …


Methods Of Magneto-Optical Spectroscopy And Analysis For Porphyrins And Polymer Thin-Films, Emigdio E. Turner Jun 2023

Methods Of Magneto-Optical Spectroscopy And Analysis For Porphyrins And Polymer Thin-Films, Emigdio E. Turner

Chemistry and Chemical Biology ETDs

This dissertation describes the construction of two high precision magneto-polarimeters for performing Faraday rotation and Magnetic Circular Dichroism (MCD) measurements of polymer thin-films. There is a focus in materials science on the development of thin-film magneto-optically active materials. These materials could allow for the construction of a thin-film optical diode, an important device for next-generation photonic technology. Upon completion of the Faraday rotation spectrometer, two publications were generated from Faraday rotation measurements of novel polymer thin-film materials.

With growing interest by materials scientists in magneto-optically active transition-metal containing materials, an MCD spectrometer was constructed to study these materials. This spectrometer …


Tio2 Crystallization At Room Temperature And Preparation Of Transparent Carbon Counter Electrode For Low-Cost Dye-Sensitized Solar Cells, Muhammad Iqbal Syauqi, Afiten Rahmin Sanjaya, Mohammad Jihad Madiabu, Munawar Khalil, Jarnuzi Gunlazuardi Jun 2023

Tio2 Crystallization At Room Temperature And Preparation Of Transparent Carbon Counter Electrode For Low-Cost Dye-Sensitized Solar Cells, Muhammad Iqbal Syauqi, Afiten Rahmin Sanjaya, Mohammad Jihad Madiabu, Munawar Khalil, Jarnuzi Gunlazuardi

Makara Journal of Science

We developed a low-cost dye-sensitized solar cell (DSSC) using TiO2 fabricated via rapid breakdown anodization (RBA) and ultrafast room-temperature crystallization (URTC). The prepared TiO2 was deposited on a self-made fluorine-doped tin oxide (FTO) conductive glass, and the FTO/TiO2 system was sensitized using curcumin dye. The DSSC was constructed by sandwiching the FTO/TiO2/curcumin electrode with an I/I2 electrolyte and a transparent carbon counter electrode prepared using a liquid–liquid interface system. The characterization results showed that the TiO2 freshly prepared via URTC was transformed into an anatase crystalline phase, which exhibited a 3.10 …


Sers For The Detection Of Trace Materials, Omari Kirkland Jun 2023

Sers For The Detection Of Trace Materials, Omari Kirkland

Dissertations, Theses, and Capstone Projects

In this dissertation are presented three projects that contribute to the body of research on SERS in the forensic, heritage, and semiconductor fields. The first project, Charge-Transfer mapping on GaN/Ag, a silver-decorated nanopillar semiconductor substrate fabricated from the GaN is used with the Raman probe Rhodamine 6 G (R6G) to map the effect of the nanofeatures on the CT resonance. The second project, in collaboration with Marco Leona from the Metropolitan Museum of Art, explores the use of AgNIFs to identify colorants used on textile fiber samples from four 19th century works of Japanese art. The final project analyzes the …


Microwave Synthesis And Photophysical Characterization Of Heteroleptic Iridium Complexes For Applications In Oleds And Lecs, Allyson Dixon May 2023

Microwave Synthesis And Photophysical Characterization Of Heteroleptic Iridium Complexes For Applications In Oleds And Lecs, Allyson Dixon

Seton Hall University Dissertations and Theses (ETDs)

A series of heteroleptic, iridium-based ionic transition metal complexes (ir-iTMCS), with the purpose to serve as potential components of OLED and LEC devices, were synthesized through a green, combinatorial-based approach. This work utilized a microwave reactor in order to bring our research into closer alignment with the tenets of green chemistry. The aim of this research was to assess the effects of structural differences, specifically steric crowding, on the photophysical characteristics of the complexes. The radiative quantum efficiencies (Φf) and excited state lifetimes (τ ) of the series of Ir-iTMCs were investigated. The rates of radiative (kr …


Investigating Reactivity Of Artificial Copper Peptides With Small Molecules, Allyson Bryant May 2023

Investigating Reactivity Of Artificial Copper Peptides With Small Molecules, Allyson Bryant

Honors Theses

The design of artificial enzymes has been a topic of significant interest in the field of biochemistry, as they can provide new opportunities for catalytic processes and drug development. De novo protein design has emerged as a promising approach to create such enzymes, and the study of metalloproteins, particularly copper-binding peptides, has become a focus of this research. This thesis investigates the reactivity of a mutated copper-binding peptide, I5A-3SCC, with oxygen and its implications in the development of artificial enzymes.

The parent peptide, 3SCC, was mutated by replacing Isoleucine residues with smaller Alanine side chains, which was hypothesized to enhance …