Open Access. Powered by Scholars. Published by Universities.®

Other Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Discipline
Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 103

Full-Text Articles in Other Engineering Science and Materials

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb Jun 2024

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb

Theses and Dissertations

Implantable drug delivery devices have many benefits over traditional drug administration techniques and have attracted a lot of attention in recent years. By delivering the medication directly to the tissue, they enable the use of larger localized concentrations, enhancing the efficacy of the treatment. Passive-release drug delivery systems, one of the various ways to provide medication, are great inventions. However, they cannot dispense the medication on demand since they are nonprogrammable. Therefore, active actuators are more advantageous in delivery applications. Smart material actuators, however, have greatly increased in popularity for manufacturing wearable and implantable micropumps due to their high energy …


Properties Of Portland Cement Concrete Incorporating Basalt-Based Pozzolanic Cement, Rana Khalil Feb 2024

Properties Of Portland Cement Concrete Incorporating Basalt-Based Pozzolanic Cement, Rana Khalil

Theses and Dissertations

Over the last decade, the world's population has increased dramatically. Due to this growth, the demand for concrete and Portland cement, in return, have increased. Manufacturing of Portland cement is an energy-intensive process that, alone, contributes to about 8% of global CO2. For decades, efforts have been exerted to reduce the harmful environmental impacts of Portland cement by reducing its use in concrete as well as considering alternate binders that may fully or partially replace it. This study aims to assess the properties of concrete incorporating a novel basalt-based pozzolanic cement. To meet this objective, four sets of concrete mixtures …


A Study On High-Frequency Bending Fatigue, Microhardness, Tensile Strength, And Microstructure Of Parts Made Using Atomic Diffusion Additive Manufacturing (Adam) And Additive Friction Stir Deposition (Afsd), Hamed Ghadimi Feb 2024

A Study On High-Frequency Bending Fatigue, Microhardness, Tensile Strength, And Microstructure Of Parts Made Using Atomic Diffusion Additive Manufacturing (Adam) And Additive Friction Stir Deposition (Afsd), Hamed Ghadimi

LSU Doctoral Dissertations

This dissertation reports the findings of several studies on the mechanical and microstructural properties of parts made using atomic diffusion additive manufacturing (ADAM) and additive friction stir deposition (AFSD). The design of a small-sized bending-fatigue test specimen for an ultrasonic fatigue testing system is reported in Chapter 1. The design was optimized based on the finite element analysis and analytical solution. The stress–life (S–N) curve is obtained for Inconel alloy 718. Chapter 2 presents the findings of ultrasonic bending-fatigue and tensile tests carried out on the ADAM test specimens. The S-N curves were created in the very high-cycle fatigue regime. …


Materials Of Lightweight Concrete Research, Meganne Chapman, Kathryn Burns, John Grubb Jan 2024

Materials Of Lightweight Concrete Research, Meganne Chapman, Kathryn Burns, John Grubb

Williams Honors College, Honors Research Projects

The objectives for this research project are to explore options for innovative and sustainable materials in lightweight concrete. Various materials including granite powder, hydrated lime, latex, and recycled glass beads will be used in the concrete testing for this project. The question the team wants to answer is how these additives affect the concrete’s mechanical properties. Weekly mix designs will be performed, and control cylinders will be compared to experimental cylinders. Compression and tensile testing will also be performed to further aid the research. The motivation for performing this research is to aid mix development for the University of Akron …


Quantifying Temperature-, Pressure-, And Nuclear Quantum Effects On Hydrophobic And Hydrophilic Water-Mediated Interactions, Justin T. Engstler Sep 2023

Quantifying Temperature-, Pressure-, And Nuclear Quantum Effects On Hydrophobic And Hydrophilic Water-Mediated Interactions, Justin T. Engstler

Dissertations, Theses, and Capstone Projects

Water-mediated interactions (WMIs) are responsible for diverse processes in aqueous solutions, including protein folding and nanoparticle aggregation. WMI may be affected by changes in temperature and pressure, and hence, they can alter chemical/physical processes that occur in aqueous environments. Traditionally, attention has been focused on hydrophobic interactions while, in comparison, the role of hydrophilic and hybrid (hydrophobic–hydrophilic) interactions have been mostly overlooked. Here, we study the role of T and P on the WMI between nanoscale (i) hydrophobic–hydrophobic, (ii) hydrophilic–hydrophilic, and (iii) hydrophilic–hydrophobic pairs of (hydroxylated/non-hydroxylated) graphene-based surfaces. We find that hydrophobic, hydrophilic, and hybrid interactions are all sensitive to …


Integrating Steel Slag Aggregates Into Asphalt Paving By Harmonizing Availability, Quality, Economics, And The Environment, Timothy R. Murphy May 2023

Integrating Steel Slag Aggregates Into Asphalt Paving By Harmonizing Availability, Quality, Economics, And The Environment, Timothy R. Murphy

Theses and Dissertations

This thesis provides guidance on how to balance matters related to the environmental stewardship, market sources, origin and uses, material properties, performance, and economic impact of using slag materials in pavements. The literature on this topic provides numerous references on the use of slag materials for specific applications, and this thesis aims to make use of those references along with other data from the author to describe slag materials from a holistic perspective and provide some suggestions for balancing several factors that impact optimal use of this resource within pavement structures. Discussion is given to the increased importance of recycling …


Pour-Over Coffee Stand With Warmer, Francesca Patawaran May 2023

Pour-Over Coffee Stand With Warmer, Francesca Patawaran

Honors Theses

This project sought to demonstrate the process of bringing a new product into the market, from the initial design and prototyping stage to marketing and, ultimately, mass production. As part of the curriculum of The Haley Barbour Center for Manufacturing Excellence (CME), the project team manufactured fifteen Pour-Over Coffee Stands with electric heating components. We first created a 3D model of the proposed design, ensuring that all components fit together in an assembly. Next, we worked with the lab technicians to create a prototype of the product. Then, we refined the manufacturing process to eliminate waste where possible. Throughout the …


Soil Respiration Measurements Reveal High Retention Of Organic Carbon From Corn Residue Derived High-Lignin Fermentation Byproduct Enabling Sustainable Lignocellulosic Biofuel Production, Michelle Sun Wang May 2023

Soil Respiration Measurements Reveal High Retention Of Organic Carbon From Corn Residue Derived High-Lignin Fermentation Byproduct Enabling Sustainable Lignocellulosic Biofuel Production, Michelle Sun Wang

Dartmouth College Master’s Theses

While 2G biofuel production can utilize non-edible, lignocellulosic feedstocks such as agricultural residues to produce liquid fuel, harvesting crop residues is unsustainable without careful management of the soil underneath. By harvesting a fraction of the crop residues left in the field after harvest, soil health can diminish and critically, the soil organic carbon (SOC) stored in agricultural fields can decrease. Currently, in the most popular 2G process models published, the issue of soil degradation remains unresolved with residue harvest strategies receiving considerable attention in the literature and other SOC management strategies receiving far less. Specifically, the strategy of returning the …


Influence Of Processed Natural Black Sand Vs. Natural White Sand And Silica Flour As Additives To Oil-Well Cementing Applications, Ramy Abuel Maaty Feb 2023

Influence Of Processed Natural Black Sand Vs. Natural White Sand And Silica Flour As Additives To Oil-Well Cementing Applications, Ramy Abuel Maaty

Theses and Dissertations

Cementing is a crucial and fundamental step in the process of drilling wells to extract oil from its reservoirs. Cementing main functions are to achieve zonal isolation and provide mechanical support to the casing. Impermeable and powerful cement is strongly desired to withstand high pressures and temperatures during the lifetime of the producing wells. Various additives to cement, such as silica flour, fly ash, Nano-additives and other advanced materials have been used and tested to attain improved cement of higher quality and enhanced properties such as permeability, porosity, mechanical and rheological properties. Very few researches have discussed the uses of …


Development Of Inconel 718f And Inconel 718e Powders For Parts Manufacturing Utilizing Binder Jet Three-Dimensional Printing And Compressed Pellet Methods, Duncan Eric Manor Ii Jan 2023

Development Of Inconel 718f And Inconel 718e Powders For Parts Manufacturing Utilizing Binder Jet Three-Dimensional Printing And Compressed Pellet Methods, Duncan Eric Manor Ii

Graduate Theses, Dissertations, and Problem Reports

Alloy Inconel 718 is a Ni based superalloy used for high temperature applications including turbine blades, turbocharger rotors and nuclear reactors. Inconel 718 is a popular commercial atomized powder that has limitations in performance for use in additive manufacturing applications due to poor part quality and efficiency of current fabrication methods. Developing new compositions and additive manufacturing (AM) methodologies of IN718 is critical to improve the quality and the efficiency of IN718 parts manufacturing. Developing new additive manufacturing methodology that produces higher quality parts made of IN718 as compared to current methods has the potential to greatly impact industry, academia, …


Experimental Tests And Numerical Study Of Trajectories Of Different Types Of Dropped Objects, Yi Li Dec 2022

Experimental Tests And Numerical Study Of Trajectories Of Different Types Of Dropped Objects, Yi Li

University of New Orleans Theses and Dissertations

In marine and offshore engineering, dropped objects, such as drill pipes, anchor chains, containers and some small parts, can accidentally fall into the water from ships or offshore platforms, causing casualties on deck or damage to underwater equipment. Damaged equipment can further harm the environment, such as oil spills from damaged wellheads. Therefore, for safe engineering and environmental protection reasons, we need to develop methods and tools that can predict the trajectory of dropped objects.

In this dissertation, we first study containers dropped from ships. More and more containers are falling into the sea due to bad weather. Containers lost …


Near-Ir Laser Ablation Of Simulated Radiologically Contaminated Oxides On Carbon Steel Feeder Pipes, Thao Viet Do Nov 2022

Near-Ir Laser Ablation Of Simulated Radiologically Contaminated Oxides On Carbon Steel Feeder Pipes, Thao Viet Do

Electronic Thesis and Dissertation Repository

As nuclear power plants age and retire from service, many countries face significant challenges concerning the safe long-term storage and disposal of large volumes of low and intermediate level radioactive wastes (L&ILW). The volumes of metallic waste are of particular concern, as when metal corrodes it produces hydrogen that could lead to pressure build-up in interim storage and disposal. In Canada, a significant fraction of the metallic wastes for Canada Deuterium Uranium (CANDU) nuclear reactors are out-of-core reactor components, such as carbon steel (CS) feeder pipes. The radioactive contamination is expected to be largely confined to the surface oxide layers …


Evaluating The Effects Of Granulated Rubber And Glass Fibers In Polymer Concrete As A Structural Material For Wafer Grinding Machines, Kevin Gabriel Kuehn, Philip Randall Streeter Jun 2022

Evaluating The Effects Of Granulated Rubber And Glass Fibers In Polymer Concrete As A Structural Material For Wafer Grinding Machines, Kevin Gabriel Kuehn, Philip Randall Streeter

Materials Engineering

Polymer concrete is a composite material used to replace cast iron and steel in wafer grinding machines for vibration damping. During the grinding and lapping processes of manufacturing silicon wafers, excessive vibrations may cause subsurface damage which requires additional polishing and reduces yield. Nine compositions containing various levels of granulated rubber and glass fibers were manufactured. CRM WRF-10 granulated rubber was examined at 0%, 5%, and 10% and Corning Cem-Fil glass fibers were added at 0%, 0.5%, and 1% by weight. Smooth-On EpoxAcast 690 epoxy resin was held constant at 16% for each composition. Crushed granite aggregate from Martin Marietta, …


In-Situ Defect Detection Using Acoustic Vibration Monitoring For Additive Manufacturing Processes, Ali Harake Jun 2022

In-Situ Defect Detection Using Acoustic Vibration Monitoring For Additive Manufacturing Processes, Ali Harake

Master's Theses

The world of additive manufacturing revolves around speed and repeatability. Inherently, the process of 3D printing is plagued with variability that fluctuates with every material and parameter modification. Without proper qualification standards, processes can never become stable enough to produce parts that may be used in aerospace, medical, and construction industries. These industries rely on high quality metrics in order to protect the lives of those who may benefit from them. To establish trust in a process, all points of variation must be controlled and accounted for every part produced. In instances where even the best process controls are enacted, …


Additive Manufacturing Of Variable Contrast Computed Tomography Anatomical Phantoms Using A Single Feedstock In Fused Filament Fabrication, Cory J. Darling May 2022

Additive Manufacturing Of Variable Contrast Computed Tomography Anatomical Phantoms Using A Single Feedstock In Fused Filament Fabrication, Cory J. Darling

University of New Orleans Theses and Dissertations

Anatomical phantoms used in biomedical education and training benefit greatly from Fused filament fabrication’s (FFF) ability to rapidly produce complex and unique models. Current materials and methods used in FFF have limited ability to accurately produce phantoms that can mimic the radiological properties of multiple biological tissues. This research demonstrates that the CT contrast of FFF produced models can be modified by varying the concentration of bismuth oxide in acrylonitrile butadiene styrene (ABS) filaments and a tunable CT contrast that mimics the CT contrast ranging from fatty tissue to cortical bone using a single composite filament without introducing artificial image …


Measuring The Electrical Properties Of 3d Printed Plastics In The W-Band, Noah Gregory May 2022

Measuring The Electrical Properties Of 3d Printed Plastics In The W-Band, Noah Gregory

Electrical Engineering Undergraduate Honors Theses

3D printers are a method of additive manufacturing that consists of layering material to produce a 3D structure. There are many types of 3D printers as well as many types of materials that are capable of being printed with. The most cost-effective and well documented method of 3D printing is called Fused Deposition Modeling (FDM). FDM printers work by feeding a thin strand of plastic filament through a heated extruder nozzle. This plastic is then deposited on a flat, typically heated, surface called a print bed. The part is then built by depositing thin layers of plastic in the shape …


A Deep Reinforcement Learning Approach With Prioritized Experience Replay And Importance Factor For Makespan Minimization In Manufacturing, Jose Napoleon Martinez Apr 2022

A Deep Reinforcement Learning Approach With Prioritized Experience Replay And Importance Factor For Makespan Minimization In Manufacturing, Jose Napoleon Martinez

LSU Doctoral Dissertations

In this research, we investigated the application of deep reinforcement learning (DRL) to a common manufacturing scheduling optimization problem, max makespan minimization. In this application, tasks are scheduled to undergo processing in identical processing units (for instance, identical machines, machining centers, or cells). The optimization goal is to assign the jobs to be scheduled to units to minimize the maximum processing time (i.e., makespan) on any unit.

Machine learning methods have the potential to "learn" structures in the distribution of job times that could lead to improved optimization performance and time over traditional optimization methods, as well as to adapt …


A Simulation Model To Determine The Supply Chain Optimum Order Quality, Ahmed Mohamed Saleh Jan 2022

A Simulation Model To Determine The Supply Chain Optimum Order Quality, Ahmed Mohamed Saleh

Archived Theses and Dissertations

No abstract provided.


Grinding And Super-Finishing Test Machine Project, Michael Simon Jan 2022

Grinding And Super-Finishing Test Machine Project, Michael Simon

Williams Honors College, Honors Research Projects

A research project in The University of Akron to study grinding and super-finishing of silicon nitride ceramic was initiated by Dr. Siamak Farhad and sponsored by the Timken Company, with the assistance of undergraduate students Michael Simon, Ryan Hosso and Mathew Rozmajzl. The study required analysis of forces and scratches generated during grinding processes of silicon nitride samples. A testing assembly was designed and constructed to record the forces generated during grinding and super-finishing of silicon nitride samples in a computer-numerical-control machine. Silicon nitride samples were subjected to desired grinding and super-finishing operations and all forces generated during the process …


Fabrication Of Soft Gripper Via Direct Inkjet Writing Additive Manufacturing, Evan D. Johnson Jan 2022

Fabrication Of Soft Gripper Via Direct Inkjet Writing Additive Manufacturing, Evan D. Johnson

Electronic Theses and Dissertations

Additive manufacturing (AM) has bloomed recently in the manufacturing field due to its many applications. Direct inkjet writing (DIW) is one of the main am technologies used in the production of grippers. DIW is the most popular taking advantage of materials like silicone and hydrogels. The technology of 3D printing with silicone is still in early stages ,nevertheless, the ability to print with soft materials is very alluring. The implementation of complex geometries in the silicone world would yield vast opportunities in the medical and robotics fields. Additive manufacturing allows for this to be thoroughly examined. In this research these …


Degumming Of Hemp Fibers Using Combined Microwave Energy And Deep Eutectic Solvent, Bulbul Ahmed Jul 2021

Degumming Of Hemp Fibers Using Combined Microwave Energy And Deep Eutectic Solvent, Bulbul Ahmed

LSU Master's Theses

Hemp is considered as one of the sustainable agricultural fiber materials. Degumming or surface modification of hemp bast is needed to produce single fibers for ensuing textile and industrial applications. The traditional degumming process necessitates a high amount of alkali, which causes detrimental environmental pollution. This study offers a new method to degum hemp fibers with reduced use of harmful alkali and precious water resources. In this work, hemp bast fibers were degummed by using combined microwave energy and deep eutectic solvent (DES). The properties of hemp fibers manufactured by this method were investigated and compared with the traditional alkali …


An Improved Earned Value Management Method Integrating Quality And Safety, Brian Briggs Jul 2021

An Improved Earned Value Management Method Integrating Quality And Safety, Brian Briggs

LSU Doctoral Dissertations

The construction industry invests significant time and money to improve quality and safety while reducing cost and schedule impacts. The industry has a sincere desire to improve construction project management methods to improve efficiency. Historically, quality and safety underperformances result from undermanaged quality control and safety activities. The cost and schedule impacts associated with poor quality work have always had an impact on construction operations. The unprecedented challenges and uncertainties of COVID-19 highlighted the need to improve the Earned Value Management (EVM) method within construction to reflect these quality and safety activities. The central goal of this dissertation is to …


Atomistic Thermo-Mechanical Description Of The Deformation Behavior, Scaling Laws, And Constitutive Modeling Of Nanoporous Gold, Mohammed Hassan Yousef Saffarini Jun 2021

Atomistic Thermo-Mechanical Description Of The Deformation Behavior, Scaling Laws, And Constitutive Modeling Of Nanoporous Gold, Mohammed Hassan Yousef Saffarini

LSU Doctoral Dissertations

Metallic foams, or nanoporous (NP) metals as it is widely referred to in literature, with ligament sizes up to a few tens of nm show exceptional mechanical properties such as high strength and stiffness per weight ratio under different loading scenarios due to their high surface area to solid volume ratio. Therefore, they can be utilized in a wide range of applications making them of great interest to researchers. While their elasticity and yield strength have been the subject of several studies, very limited attention was given to the effect of size, strain rate, and temperature on the material plastic …


Development Of A Marine Biodegradable Target Balloon, Blake Samuel Robinson, Arash Sam Akhavi, David Leonardo Albarran-Martinez Jun 2021

Development Of A Marine Biodegradable Target Balloon, Blake Samuel Robinson, Arash Sam Akhavi, David Leonardo Albarran-Martinez

Materials Engineering

The US Navy utilizes PVC target balloons, known as Killer Tomatoes, that are inflated onboard a naval vessel then deployed into the ocean to calibrate a variety of weaponry. The Navy has requested the investigation of biodegradable polymers to replace the PVC in attempts to reduce ocean waste that is generated from the leftover PVC material. After communicating with American Pacific Plastic Fabricators (APPF), the current manufacturer of the Killer Tomatoes, we gained an understanding of the manufacturing process and the material requirements that would allow a new material to be integrated into their current process. Two proprietary, trial polymers …


Optical Engineering Of Iii-Nitride Nanowire Light-Emitting Diodes And Applications, Ha Quoc Thang Bui May 2021

Optical Engineering Of Iii-Nitride Nanowire Light-Emitting Diodes And Applications, Ha Quoc Thang Bui

Dissertations

Applications of III-nitride nanowires are intensively explored in different emerging technologies including light-emitting diodes (LEDs), laser diodes, photodiodes, biosensors, and solar cells. The synthesis of the III-nitride nanowires by molecular beam epitaxy (MBE) is investigated with significant achievements. III-nitride nanowires can be grown on dissimilar substrates i.e., silicon with nearly dislocation free due to the effective strain relaxation. III-nitride nanowires, therefore, are perfectly suited for high performance light emitters for cost-effective fabrication of the advanced photonic-electronic integrated platforms. This dissertation addresses the design, fabrication, and characterization of III-nitride nanowire full-color micro-LED (µLED) on silicon substrates for µLED display technologies, high-efficient …


Intermittent Dynamics Of Dense Particulate Matter, Chao Cheng May 2021

Intermittent Dynamics Of Dense Particulate Matter, Chao Cheng

Dissertations

Granular particle systems are scattered around the universe, and they can behave like solids when there exist strong force-bearing networks, so that the granular system can resist certain stress without deformation. When such a network is not present, particles yield to small stress and behave like a fluid. A wide range of systems exhibit intermittent dynamics as they are slowly loaded, with different dynamical regimes governing many industrial and natural phenomena. While a significant amount of research on exploring intermittent dynamics of granular systems has been carried out, not much is known about the connection between particle-scale response and the …


Investigation Of Topological Phonons In Discrete Mechanical Metamaterials, Kai Qian May 2021

Investigation Of Topological Phonons In Discrete Mechanical Metamaterials, Kai Qian

Dissertations

The study of topological mechanical metamaterials is a new emerging field that focuses on the topological properties of artificial mechanical structures. Inspired by topological insulators, topological mechanism has attracted intensive attention in condensed matter physics and successfully connected the quantum mechanical descriptions of electrons with the classical descriptions of phonons. It has led to experiments of mechanical metamaterials possessing topological characteristics, such as topologically protected conducting edges or surfaces without back-scattering. This dissertation presents a new experimental approach for mechanically engineering topological metamaterials based on patterning magnetically coupled spinners in order to localize the propagation of vibrations and evaluate different …


Dry Reforming Of Methane Using Microwave Irradiated Metal Oxide/Coal Char Catalysts, Anthony Carter Jan 2021

Dry Reforming Of Methane Using Microwave Irradiated Metal Oxide/Coal Char Catalysts, Anthony Carter

Graduate Theses, Dissertations, and Problem Reports

This research focuses on the synthesis of both shaped and amorphous powder materials, the combination of these materials with dried Powder River Basin (PRB) coal char, and their reactionary properties with methane and carbon dioxide gasses with conventional and microwave (MW) heating. The first goal of this project was to synthesize shaped micro and nano sized particles with ideal dielectric properties for converting electromagnetic energy into heat and proven capabilities of activating methane. These particles were synthesized via solvothermal, hydrothermal, and co-preceptory treatments alone and onto the surface of dried PRB coal char. PRB is a sub-bituminous, low-ranking coal (LRC) …


Advancement Of Full-Vector Variable-Temperature Magnetometry For Rock-Magnetic And Paleointensity Applications, Leonid Surovitskii Jan 2021

Advancement Of Full-Vector Variable-Temperature Magnetometry For Rock-Magnetic And Paleointensity Applications, Leonid Surovitskii

Dissertations, Master's Theses and Master's Reports

Data on the variation of the direction and strength of Earth’s ancient magnetic field (absolute paleointensity) provide crucial information into the mechanisms of the geodynamo and the Earth’s thermal history. However, the use of conventional methods and instrumentation for absolute paleointensity determination has been hampered by physicochemical alteration of the samples caused by multiple high-temperature cycles and long experiment durations. The reliability and efficiency of the measurement process can be improved by the measurement of the full remanent magnetization vector simultaneously with the temperature cycling of a sample. Such as approach can also substantially expand the scope of materials available …


Valorization Of Xylan In Agroforestry Waste Streams, Harrison Appiah Jan 2021

Valorization Of Xylan In Agroforestry Waste Streams, Harrison Appiah

Graduate Theses, Dissertations, and Problem Reports

Valorization of Xylan in Agroforestry Waste Streams.

Harrison Appiah

Microwave-assisted deep eutectic solvent and gamma-valerolactone metallic chloride catalyzed conversion of xylan to furfural were investigated using a 2x3 factorial experimental design at two levels of percent microwave power, reaction time, and catalyst concentration. The levels of each factor studied were (20%, 60% microwave power, 2, 4 minutes, and 10, 20mg) respectively. The effect of three metallic chloride catalysts (LiCl, FeCl3.6H20, CuCl2) on the conversion of xylan to furfural was also investigated. The gamma-valerolactone-ferric chloride sent system exhibited the highest mean yield of furfural (56.50%). The next highest furfural yield of …