Open Access. Powered by Scholars. Published by Universities.®

Other Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

2020

Discipline
Institution
Keyword
Publication

Articles 1 - 10 of 10

Full-Text Articles in Other Engineering Science and Materials

Development Of Reduced Order Models Using Reservoir Simulation And Physics Informed Machine Learning Techniques, Mark V. Behl Jr Nov 2020

Development Of Reduced Order Models Using Reservoir Simulation And Physics Informed Machine Learning Techniques, Mark V. Behl Jr

LSU Master's Theses

Reservoir simulation is the industry standard for prediction and characterization of processes in the subsurface. However, simulation is computationally expensive and time consuming. This study explores reduced order models (ROMs) as an appropriate alternative. ROMs that use neural networks effectively capture nonlinear dependencies, and only require available operational data as inputs. Neural networks are a black box and difficult to interpret, however. Physics informed neural networks (PINNs) provide a potential solution to these shortcomings, but have not yet been applied extensively in petroleum engineering.

A mature black-oil simulation model from Volve public data release was used to generate training data …


Centrifugal Microfluidic Platform For Solid-Phase-Extraction (Spe) And Fluorescence Detection Applications, Yong Zhang Nov 2020

Centrifugal Microfluidic Platform For Solid-Phase-Extraction (Spe) And Fluorescence Detection Applications, Yong Zhang

LSU Doctoral Dissertations

Solid phase extraction (SPE) is a widely used method to separate and concentrate the target molecules in liquid mixture. Traditional SPE has to be conducted in the laboratory with professional equipment and skilled operators. The microfluidic and 3D printing technology have opened up the opportunity in developing miniaturized automatic instruments. The main contribution of this research is to integrate the SPE process on a novel centrifugal platform. Various valves are applied on the platform to help control the aqueous sample and reagents in the cartridge.

First, a centrifugal microfluidic platform was built for automatically detecting trace oil pollution in water. …


A Modelling Study For Smart Pigging Technique For Pipeline Leak Detection, Caitlyn Judith Thiberville Nov 2020

A Modelling Study For Smart Pigging Technique For Pipeline Leak Detection, Caitlyn Judith Thiberville

LSU Master's Theses

Although leak incidents continue, a pipeline remains the most reliable mode of transportation within the oil and gas industry. It becomes even more important today because the projection for new pipelines is expected to increase by 1 billion BOE through 2035. In addition, increasing number and length of subsea tiebacks face new challenges in term of data acquisition, monitoring, analysis, and remedial actions. Passive leak-detection methods commonly used in the industry have been successful with some limitations in that they often cannot detect small leaks and seeps. In addition to a thorough review of related topics, this study investigates how …


Measurement And Modeling Of Micro Residual Stresses In Pure Zirconium And Zr-2.5nb Polycrystals, Abdulla Alawadi Sep 2020

Measurement And Modeling Of Micro Residual Stresses In Pure Zirconium And Zr-2.5nb Polycrystals, Abdulla Alawadi

Electronic Thesis and Dissertation Repository

In CANada Deterium Uranium (CANDU) nuclear reactors, Zr-2.5Nb alloy pressure tubes separate the hot water and cold moderator. Pressure tubes are susceptible to the diffusion of hydrogen from water and formation of a brittle phase called zirconium hydrides. The diffusion and formation of hydrides are affected by the state of stresses within the tubes. As such, it is of great significance to understand the source of the stresses that develop within the tubes. This thesis focuses on the characterization of the micro and nano scale residual stresses that develop in pure zirconium and Zr-2.5Nb polycrystals. With using three-dimensional synchrotron X-ray …


The Development Of All Solid-State Optical Cryo-Cooler, Junwei Meng May 2020

The Development Of All Solid-State Optical Cryo-Cooler, Junwei Meng

Optical Science and Engineering ETDs

This dissertation describes the development of an all solid-state optical cryo-cooler. Crystals of 10% wt. ytterbium-doped yttrium lithium fluoride (Yb3+:YLF) are used to cool an infrared HgCdTe sensor payload to an absolute temperature below 135 K, equivalent to delta T equal 138 K below ambient. This record level of cooling is accomplished with a single stage, in a completely vibration-free environment, with a corresponding cooling power of 190 mW. This milestone is made possible by the design and fabrication of an undoped YLF thermal link that efficiently shields the payload with a non-right angle kink from intense anti-Stokes …


Focused Beam System Biaxial Material Characterization, Nicholas A. O'Gorman Mar 2020

Focused Beam System Biaxial Material Characterization, Nicholas A. O'Gorman

Theses and Dissertations

Electromagnetic material characterization is the process of determining the constitutive parameters (complex permittivity and permeability) of given a sample. Due to the large number of unknowns involved, multiple unique measurements are required for material property extraction. Many measurement methods, such as waveguides and striplines, possess a rigid internal structure that the sample being measured must adhere to. This rigidity limits these methods to samples that fit within the device and inhibits oblique sample orientations, limiting the number of independent measurements that can be obtained. A focus beam system, due to being an open system with greater freedom in sample size …


Dual-Axis Solar Tracker, Bryan Kennedy Jan 2020

Dual-Axis Solar Tracker, Bryan Kennedy

All Undergraduate Projects

Renewable energies, and fuels that are not fossil fuel-based, are one of the prolific topics of debate in modern society. With climate change now becoming a primary focus for scientists and innovators of today, one of the areas for the largest amount of potential and growth is that of the capturing and utilization of Solar Energy. This method involves using a mechanical system to track the progression of the sun as it traverses the sky throughout the day. A dual-axis solar tracker such as the one designed and built for this project, can follow the sun both azimuthally and in …


Determination And Validation Of Mechanical Properties Of Materials And Substructures, Karl Bates Jan 2020

Determination And Validation Of Mechanical Properties Of Materials And Substructures, Karl Bates

Williams Honors College, Honors Research Projects

The nature of this project is confidential and cannot be disclosed in detail. Generally, this project involves the manufacturing of an original design, which is subjected to a variety of tests – including tensile, compressive, bending, fatigue, and environmental testing, as well as qualitative destructive tests – to determine the mechanical properties of the component. This testing data compares with values predicted using Finite-Element Analysis. The validation of predicted FEM values is crucial to the success of this component, as it is designed for lifecritical applications. If test results indicate poor structural performance, considerable redesign will be necessary.


Tabletop Mechanical Tester, Jamie Dombroski, Brian English, Richard Leffler, Andrew Shirk Jan 2020

Tabletop Mechanical Tester, Jamie Dombroski, Brian English, Richard Leffler, Andrew Shirk

Williams Honors College, Honors Research Projects

The need for hands-on and face-to-face experiences in the engineering classroom is very great. The equations, principles, and concepts can all be learned, but without the visual and tactile application, these don’t always sink in or become concrete. A small-scale tensile test machine was designed, sourced, manufactured, and tested for the purpose of being applied in classroom settings to provide this experience to engineering students. Extensive research was performed concerning tensile machines on the market, the essential elements of which are the load cell, grips, crosshead, extensometer, motor, and frame. The raw materials for the frame were purchased and drawings …


Jominy Hardenability Tester With In-Situ Heating, Luke Allen Jan 2020

Jominy Hardenability Tester With In-Situ Heating, Luke Allen

Williams Honors College, Honors Research Projects

This project centers on building a Jominy Hardenability tester with In-Situ heating for the manufacturing lab at the University of Akron. A new process and setup will be designed using engineering concepts in order to make the testing more efficient and safer for the teaching and testing of metal hardness. The current Jominy testing setup has efficiency issues within the transfer of specimen from induction heater to testing rig. Our design will simplify the design by creating a test rig that removes the traveling aspect of the specimen which will limit the amount of premature cooling done and will be …