Open Access. Powered by Scholars. Published by Universities.®

Other Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Mechanical Engineering

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 36

Full-Text Articles in Other Engineering Science and Materials

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb Jun 2024

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb

Theses and Dissertations

Implantable drug delivery devices have many benefits over traditional drug administration techniques and have attracted a lot of attention in recent years. By delivering the medication directly to the tissue, they enable the use of larger localized concentrations, enhancing the efficacy of the treatment. Passive-release drug delivery systems, one of the various ways to provide medication, are great inventions. However, they cannot dispense the medication on demand since they are nonprogrammable. Therefore, active actuators are more advantageous in delivery applications. Smart material actuators, however, have greatly increased in popularity for manufacturing wearable and implantable micropumps due to their high energy …


A Study On High-Frequency Bending Fatigue, Microhardness, Tensile Strength, And Microstructure Of Parts Made Using Atomic Diffusion Additive Manufacturing (Adam) And Additive Friction Stir Deposition (Afsd), Hamed Ghadimi Feb 2024

A Study On High-Frequency Bending Fatigue, Microhardness, Tensile Strength, And Microstructure Of Parts Made Using Atomic Diffusion Additive Manufacturing (Adam) And Additive Friction Stir Deposition (Afsd), Hamed Ghadimi

LSU Doctoral Dissertations

This dissertation reports the findings of several studies on the mechanical and microstructural properties of parts made using atomic diffusion additive manufacturing (ADAM) and additive friction stir deposition (AFSD). The design of a small-sized bending-fatigue test specimen for an ultrasonic fatigue testing system is reported in Chapter 1. The design was optimized based on the finite element analysis and analytical solution. The stress–life (S–N) curve is obtained for Inconel alloy 718. Chapter 2 presents the findings of ultrasonic bending-fatigue and tensile tests carried out on the ADAM test specimens. The S-N curves were created in the very high-cycle fatigue regime. …


Development Of Inconel 718f And Inconel 718e Powders For Parts Manufacturing Utilizing Binder Jet Three-Dimensional Printing And Compressed Pellet Methods, Duncan Eric Manor Ii Jan 2023

Development Of Inconel 718f And Inconel 718e Powders For Parts Manufacturing Utilizing Binder Jet Three-Dimensional Printing And Compressed Pellet Methods, Duncan Eric Manor Ii

Graduate Theses, Dissertations, and Problem Reports

Alloy Inconel 718 is a Ni based superalloy used for high temperature applications including turbine blades, turbocharger rotors and nuclear reactors. Inconel 718 is a popular commercial atomized powder that has limitations in performance for use in additive manufacturing applications due to poor part quality and efficiency of current fabrication methods. Developing new compositions and additive manufacturing (AM) methodologies of IN718 is critical to improve the quality and the efficiency of IN718 parts manufacturing. Developing new additive manufacturing methodology that produces higher quality parts made of IN718 as compared to current methods has the potential to greatly impact industry, academia, …


Evaluating The Effects Of Granulated Rubber And Glass Fibers In Polymer Concrete As A Structural Material For Wafer Grinding Machines, Kevin Gabriel Kuehn, Philip Randall Streeter Jun 2022

Evaluating The Effects Of Granulated Rubber And Glass Fibers In Polymer Concrete As A Structural Material For Wafer Grinding Machines, Kevin Gabriel Kuehn, Philip Randall Streeter

Materials Engineering

Polymer concrete is a composite material used to replace cast iron and steel in wafer grinding machines for vibration damping. During the grinding and lapping processes of manufacturing silicon wafers, excessive vibrations may cause subsurface damage which requires additional polishing and reduces yield. Nine compositions containing various levels of granulated rubber and glass fibers were manufactured. CRM WRF-10 granulated rubber was examined at 0%, 5%, and 10% and Corning Cem-Fil glass fibers were added at 0%, 0.5%, and 1% by weight. Smooth-On EpoxAcast 690 epoxy resin was held constant at 16% for each composition. Crushed granite aggregate from Martin Marietta, …


Additive Manufacturing Of Variable Contrast Computed Tomography Anatomical Phantoms Using A Single Feedstock In Fused Filament Fabrication, Cory J. Darling May 2022

Additive Manufacturing Of Variable Contrast Computed Tomography Anatomical Phantoms Using A Single Feedstock In Fused Filament Fabrication, Cory J. Darling

University of New Orleans Theses and Dissertations

Anatomical phantoms used in biomedical education and training benefit greatly from Fused filament fabrication’s (FFF) ability to rapidly produce complex and unique models. Current materials and methods used in FFF have limited ability to accurately produce phantoms that can mimic the radiological properties of multiple biological tissues. This research demonstrates that the CT contrast of FFF produced models can be modified by varying the concentration of bismuth oxide in acrylonitrile butadiene styrene (ABS) filaments and a tunable CT contrast that mimics the CT contrast ranging from fatty tissue to cortical bone using a single composite filament without introducing artificial image …


Grinding And Super-Finishing Test Machine Project, Michael Simon Jan 2022

Grinding And Super-Finishing Test Machine Project, Michael Simon

Williams Honors College, Honors Research Projects

A research project in The University of Akron to study grinding and super-finishing of silicon nitride ceramic was initiated by Dr. Siamak Farhad and sponsored by the Timken Company, with the assistance of undergraduate students Michael Simon, Ryan Hosso and Mathew Rozmajzl. The study required analysis of forces and scratches generated during grinding processes of silicon nitride samples. A testing assembly was designed and constructed to record the forces generated during grinding and super-finishing of silicon nitride samples in a computer-numerical-control machine. Silicon nitride samples were subjected to desired grinding and super-finishing operations and all forces generated during the process …


An Improved Earned Value Management Method Integrating Quality And Safety, Brian Briggs Jul 2021

An Improved Earned Value Management Method Integrating Quality And Safety, Brian Briggs

LSU Doctoral Dissertations

The construction industry invests significant time and money to improve quality and safety while reducing cost and schedule impacts. The industry has a sincere desire to improve construction project management methods to improve efficiency. Historically, quality and safety underperformances result from undermanaged quality control and safety activities. The cost and schedule impacts associated with poor quality work have always had an impact on construction operations. The unprecedented challenges and uncertainties of COVID-19 highlighted the need to improve the Earned Value Management (EVM) method within construction to reflect these quality and safety activities. The central goal of this dissertation is to …


Development Of A Marine Biodegradable Target Balloon, Blake Samuel Robinson, Arash Sam Akhavi, David Leonardo Albarran-Martinez Jun 2021

Development Of A Marine Biodegradable Target Balloon, Blake Samuel Robinson, Arash Sam Akhavi, David Leonardo Albarran-Martinez

Materials Engineering

The US Navy utilizes PVC target balloons, known as Killer Tomatoes, that are inflated onboard a naval vessel then deployed into the ocean to calibrate a variety of weaponry. The Navy has requested the investigation of biodegradable polymers to replace the PVC in attempts to reduce ocean waste that is generated from the leftover PVC material. After communicating with American Pacific Plastic Fabricators (APPF), the current manufacturer of the Killer Tomatoes, we gained an understanding of the manufacturing process and the material requirements that would allow a new material to be integrated into their current process. Two proprietary, trial polymers …


Investigation Of Topological Phonons In Discrete Mechanical Metamaterials, Kai Qian May 2021

Investigation Of Topological Phonons In Discrete Mechanical Metamaterials, Kai Qian

Dissertations

The study of topological mechanical metamaterials is a new emerging field that focuses on the topological properties of artificial mechanical structures. Inspired by topological insulators, topological mechanism has attracted intensive attention in condensed matter physics and successfully connected the quantum mechanical descriptions of electrons with the classical descriptions of phonons. It has led to experiments of mechanical metamaterials possessing topological characteristics, such as topologically protected conducting edges or surfaces without back-scattering. This dissertation presents a new experimental approach for mechanically engineering topological metamaterials based on patterning magnetically coupled spinners in order to localize the propagation of vibrations and evaluate different …


Dry Reforming Of Methane Using Microwave Irradiated Metal Oxide/Coal Char Catalysts, Anthony Carter Jan 2021

Dry Reforming Of Methane Using Microwave Irradiated Metal Oxide/Coal Char Catalysts, Anthony Carter

Graduate Theses, Dissertations, and Problem Reports

This research focuses on the synthesis of both shaped and amorphous powder materials, the combination of these materials with dried Powder River Basin (PRB) coal char, and their reactionary properties with methane and carbon dioxide gasses with conventional and microwave (MW) heating. The first goal of this project was to synthesize shaped micro and nano sized particles with ideal dielectric properties for converting electromagnetic energy into heat and proven capabilities of activating methane. These particles were synthesized via solvothermal, hydrothermal, and co-preceptory treatments alone and onto the surface of dried PRB coal char. PRB is a sub-bituminous, low-ranking coal (LRC) …


Entertainment 721, Mark Hendricks, Noah John, Jadon Vanyo, Chelsea Payne Jan 2021

Entertainment 721, Mark Hendricks, Noah John, Jadon Vanyo, Chelsea Payne

Williams Honors College, Honors Research Projects

The goal of this project was to design a luxury, aesthetically pleasing entertainment system with a TV lift mechanism that could be remote controlled. The design would also include a cooling cabinet for gaming systems, a remote locking system, and additional storage. Using a morphological chart and weighted decision matrix for each subsystem key features were determined to be included in the design. Several performance benchmarks were determined to accomplish the team’s design. Almost every benchmark was successful in the build of the first prototype. Several heat calculations and FEA analyses were performed on the system to ensure the success …


Centrifugal Microfluidic Platform For Solid-Phase-Extraction (Spe) And Fluorescence Detection Applications, Yong Zhang Nov 2020

Centrifugal Microfluidic Platform For Solid-Phase-Extraction (Spe) And Fluorescence Detection Applications, Yong Zhang

LSU Doctoral Dissertations

Solid phase extraction (SPE) is a widely used method to separate and concentrate the target molecules in liquid mixture. Traditional SPE has to be conducted in the laboratory with professional equipment and skilled operators. The microfluidic and 3D printing technology have opened up the opportunity in developing miniaturized automatic instruments. The main contribution of this research is to integrate the SPE process on a novel centrifugal platform. Various valves are applied on the platform to help control the aqueous sample and reagents in the cartridge.

First, a centrifugal microfluidic platform was built for automatically detecting trace oil pollution in water. …


The Development Of All Solid-State Optical Cryo-Cooler, Junwei Meng May 2020

The Development Of All Solid-State Optical Cryo-Cooler, Junwei Meng

Optical Science and Engineering ETDs

This dissertation describes the development of an all solid-state optical cryo-cooler. Crystals of 10% wt. ytterbium-doped yttrium lithium fluoride (Yb3+:YLF) are used to cool an infrared HgCdTe sensor payload to an absolute temperature below 135 K, equivalent to delta T equal 138 K below ambient. This record level of cooling is accomplished with a single stage, in a completely vibration-free environment, with a corresponding cooling power of 190 mW. This milestone is made possible by the design and fabrication of an undoped YLF thermal link that efficiently shields the payload with a non-right angle kink from intense anti-Stokes …


Dual-Axis Solar Tracker, Bryan Kennedy Jan 2020

Dual-Axis Solar Tracker, Bryan Kennedy

All Undergraduate Projects

Renewable energies, and fuels that are not fossil fuel-based, are one of the prolific topics of debate in modern society. With climate change now becoming a primary focus for scientists and innovators of today, one of the areas for the largest amount of potential and growth is that of the capturing and utilization of Solar Energy. This method involves using a mechanical system to track the progression of the sun as it traverses the sky throughout the day. A dual-axis solar tracker such as the one designed and built for this project, can follow the sun both azimuthally and in …


Tabletop Mechanical Tester, Jamie Dombroski, Brian English, Richard Leffler, Andrew Shirk Jan 2020

Tabletop Mechanical Tester, Jamie Dombroski, Brian English, Richard Leffler, Andrew Shirk

Williams Honors College, Honors Research Projects

The need for hands-on and face-to-face experiences in the engineering classroom is very great. The equations, principles, and concepts can all be learned, but without the visual and tactile application, these don’t always sink in or become concrete. A small-scale tensile test machine was designed, sourced, manufactured, and tested for the purpose of being applied in classroom settings to provide this experience to engineering students. Extensive research was performed concerning tensile machines on the market, the essential elements of which are the load cell, grips, crosshead, extensometer, motor, and frame. The raw materials for the frame were purchased and drawings …


Jominy Hardenability Tester With In-Situ Heating, Luke Allen Jan 2020

Jominy Hardenability Tester With In-Situ Heating, Luke Allen

Williams Honors College, Honors Research Projects

This project centers on building a Jominy Hardenability tester with In-Situ heating for the manufacturing lab at the University of Akron. A new process and setup will be designed using engineering concepts in order to make the testing more efficient and safer for the teaching and testing of metal hardness. The current Jominy testing setup has efficiency issues within the transfer of specimen from induction heater to testing rig. Our design will simplify the design by creating a test rig that removes the traveling aspect of the specimen which will limit the amount of premature cooling done and will be …


Bouncing Dynamics Of A Class Of Mem/Nem Switching Systems, Mohamed Bognash Jan 2019

Bouncing Dynamics Of A Class Of Mem/Nem Switching Systems, Mohamed Bognash

Electronic Thesis and Dissertation Repository

The aim of the present research is to understand the bouncing dynamic behavior of NEM/MEM switches in order to improve the switch performance and reliability. It is well known that the bouncing can dramatically degrade the switch performance and life; hence, in the present study, bouncing dynamics of a cantilever-based NME/MEM switch has been studied in detail. To this end, a model of a MEM switch that incorporates electrostatic force, squeeze film air damping force as well as asperity-based contact force has been proposed for an electrostatically actuated switch. An actuation force due to piezoelectric effects is further included in …


Metal Thin Film Stiffness Extraction Technique For Surface Acoustic Wave Filters, Travis R. Weismeyer Dec 2018

Metal Thin Film Stiffness Extraction Technique For Surface Acoustic Wave Filters, Travis R. Weismeyer

Electronic Theses and Dissertations

Accurate knowledge of the surface acoustic wave (SAW) properties propagating at the surface of a piezoelectric substrate with thin films, electrodes or temperature compensated films, is critical in SAW filter design to meet the target frequency response, power durability and performance prior to device fabrication. While reliable material constants exist for substrates such as LiNbO3 used in SAW filters, the absolute elastic constants associated with operational thin films used for electrodes or temperature compensation do not exist. Although the bulk values of the constituent materials are known, the composite film/substrate properties are difficult to predict since they depend strongly on …


Effect Of Material Viscoelasticity On Frequency Tuning Of Dielectric Elastomer Membrane Resonators, Liyang Tian Jun 2018

Effect Of Material Viscoelasticity On Frequency Tuning Of Dielectric Elastomer Membrane Resonators, Liyang Tian

Electronic Thesis and Dissertation Repository

Dielectric elastomers (DEs) capable of large voltage-induced deformation show promise for applications such as resonators and oscillators. However, the dynamic performance of such vibrational devices is not only strongly affected by the nonlinear electromechanical coupling and material hyperelasticity, but also significantly by the material viscoelasticity. The material viscoelasticity of DEs originates from the highly mobile polymer chains that constitute the polymer networks of the DE. Moreover, due to the multiple viscous polymer subnetworks, DEs possess multiple relaxation processes. Therefore, in order to predict the dynamic performance of DE-based devices, a theoretical model that accounts for the multiple relaxation processes is …


High Performance Thermal Insulation: Silica Aerogels In Construction Technology, Matthew Giarrusso Jun 2018

High Performance Thermal Insulation: Silica Aerogels In Construction Technology, Matthew Giarrusso

Honors Theses

The United States is a world leader in the production and expenditure of energy, accounting for 18% of the total global energy consumption in 2016, 40% of which was used for the heating, cooling, and lighting of commercial and residential buildings. Currently, traditional air-based insulation products are being used in thicker and more numerous layers in an attempt to keep up with contemporary codes and standards. One promising alternative to traditional insulation is silica aerogel. With a remarkably low density and thermal conductivity, silica aerogel could save energy, space, and weight in new and retrofit structures. Silica aerogels are currently …


Microwave Acoustic Saw Resonators For Stable High-Temperature Harsh-Environment Static And Dynamic Strain Sensing Applications, Anin K. Maskay May 2018

Microwave Acoustic Saw Resonators For Stable High-Temperature Harsh-Environment Static And Dynamic Strain Sensing Applications, Anin K. Maskay

Electronic Theses and Dissertations

High-temperature, harsh-environment static and dynamic strain sensors are needed for industrial process monitoring and control, fault detection, structural health monitoring in power plant environments, steel and refractory material manufacturing, aerospace, and defense applications. Sensor operation in the aforementioned extreme environments require robust devices capable of sustaining the targeted high temperatures, while maintaining a stable sensor response. Current technologies face challenges regarding device or system size, complexity, operational temperature, or stability.

Surface acoustic wave (SAW) sensor technology using high temperature capable piezoelectric substrates and thin film technology has favorable properties such as robustness; miniature size; capability of mass production; reduced installation …


Structural And Aerodynamic Design, Procedure And Analysis Of A Small V-Shaped Vertical Axis Wind Turbine, Odari J. Whyte Jan 2018

Structural And Aerodynamic Design, Procedure And Analysis Of A Small V-Shaped Vertical Axis Wind Turbine, Odari J. Whyte

Electronic Theses and Dissertations

Over the last two decades there has been a renewed interest in Vertical Axis Wind Turbines. This turbine configuration though unpopular for large-scale generation has found a niche market in the way of offshore energy harvesting. However, offshore wind has its challenges. In this thesis a detailed comprehensive study of a proposed V-shaped vertical axis turbine rotor is performed in order to examine its structural and aerodynamic characteristics. The design met and exceeded the safety parameters establish for test bed operation, showing a factor of safety of 1.87 with regard to fatigue stress response. A satisfactory fatigue stress design life …


Numerical Simulation Of Multi-Phase Core-Shell Molten Metal Drop Oscillations, Kaushal Sumaria Oct 2017

Numerical Simulation Of Multi-Phase Core-Shell Molten Metal Drop Oscillations, Kaushal Sumaria

Masters Theses

The surface tension of liquid metals is an important and scientifically interesting parameter which affects many metallurgical processes such as casting, welding and melt spinning. Conventional methods for measuring surface tension are difficult to use for molten metals above temperatures of 1000 K. Containerless methods are can be used to measure the surface tension of molten metals above 1000 K. Oscillating drop method is one such method where a levitated droplet is allowed to undergo damped oscillations. Using the Rayleigh’s theory for the oscillation of force-free inviscid spherical droplets, surface tension and viscosity of the sample can be calculated from …


Correlating Long-Term Lithium Ion Battery Performance With Solid Electrolyte Interphase (Sei) Layer Properties, Seong Jin An Aug 2017

Correlating Long-Term Lithium Ion Battery Performance With Solid Electrolyte Interphase (Sei) Layer Properties, Seong Jin An

Doctoral Dissertations

This study was conducted to understand effects of some of key factors (i.e., anode surface properties, formation cycling conditions, and electrolyte conditions) on solid electrolyte interphase (SEI) formation in lithium ion batteries (LIBs) and the battery cycle life. The SEI layer passivates electrode surfaces and prevents electron transfer and electrolyte diffusion through it while allowing lithium ion diffusion, which is essential for stable reversible capacities. It also influences initial capacity loss, self-discharge, cycle life, rate capability and safety. Thus, SEI layer formation and electrochemical stability are primary topics in LIB development. This research involves experiments and discussions on key factors …


Bear Minimum: Ultralight Composite Bear Canister, Rama B. Adajian, Adam C. Eisenbarth Jun 2017

Bear Minimum: Ultralight Composite Bear Canister, Rama B. Adajian, Adam C. Eisenbarth

Mechanical Engineering

The ultralight backpacking community needs a strong, easy to use, safe bear canister that is lighter than current market products for trekking in the backcountry. A full design of the lid for the bear canister is to be completed. This includes the locking mechanism to ensure it is bear proof, the interface between the lid and the canister, and the structure of the lid so it passes the strength and weight specifications. The lid, along with the already designed canister body, is to be manufactured with formal documentation. The lid will initially be tested separately and then with the canister …


The Development Of A Vacuum Forming System For Kydex® And Other Thermoplastic Sheet, Andrew G. Smith May 2017

The Development Of A Vacuum Forming System For Kydex® And Other Thermoplastic Sheet, Andrew G. Smith

Electronic Theses and Dissertations

Vacuum forming is a popular, cost effective method amongst large and small scale applications. The method is used to mold a material to the surface of a mold/pattern in order to create a negative copy for reproduction or an object in positive form. The prototype vacuum forming system developed and documented herein is of a membrane-seal type that consists of three (3) principle parts: radial platen, Hinged Frame and Platen Support Assembly, and a PVC surge tank. Each part is described in detail through design, manufacturing, and testing processes. The design supports functional versatility, small scale molding, and uses readily …


Multi-Use Fireline Handtool, Bruce W. Bernard Jr Jan 2016

Multi-Use Fireline Handtool, Bruce W. Bernard Jr

All Undergraduate Projects

A wildland firefighter is a valuable resource to protecting public lands and managing fuels. The many hand tools used by firefighters aid in their ability to complete any required tasks effectively. Several of the tools available are specially purposed for individually grubbing, scraping, or liming. A small squad of firefighters could become a more effective resource if the tools they carried could perform several of these purposes as one single tool. To improve the effectiveness of an individual on the fireline a multi-use hand tool was designed to include an axe for liming and a heavy duty scraper for grubbing …


Magnus Effect In Duct Flow, Cameron W. Clarke, Jesse S. Batko, Kenneth W. Smith Jr. Jan 2015

Magnus Effect In Duct Flow, Cameron W. Clarke, Jesse S. Batko, Kenneth W. Smith Jr.

Williams Honors College, Honors Research Projects

The following research paper details the preliminary research carried out by this team. The project was originally conceived to determine if Magnus Lift could be utilized in an unconventional way to assist rockets during takeoff. Several conceptual designs were proposed, but the idea was scrapped when it became apparent that the team would not be able to generate the desired lift without inducing significant amounts of drag and additional weight on a rocket. Instead, the team focused on researching an interesting topic that hasn’t been previously explored: Magnus lift on a cylinder within a duct. An experimental procedure that could …


A Study To Evaluate Non-Uniform Phase Maps In Shape Memory Alloys Using Finite Element Method, Naren Motte Jan 2015

A Study To Evaluate Non-Uniform Phase Maps In Shape Memory Alloys Using Finite Element Method, Naren Motte

Theses and Dissertations

The unique thermo-mechanical behavior of Shape Memory Alloys (SMAs), such as their ability to recover the original shape upon heating or being able to tolerate large deformations without undergoing plastic transformations, makes them a good choice for actuators.

This work studies their application in the aerospace and defense industries where SMA components can serve as release mechanisms for gates of enclosures that have to be deployed remotely. This work provides a novel approach in evaluating the stress and heat induced change of phase in a SMA, in terms of the transformation strain tensor. In particular, the FEA tool

ANSYS has …


Binder Jet Additive Manufacturing Of Stainless Steel-Hydroxyapatite Bio-Composite, Don Suranga Dhanushka Uduwage Jan 2015

Binder Jet Additive Manufacturing Of Stainless Steel-Hydroxyapatite Bio-Composite, Don Suranga Dhanushka Uduwage

All Graduate Theses, Dissertations, and Other Capstone Projects

This study was conducted to create a bio-composite with a porous structure using the binder-jet printing additive manufacturing process. The samples were printed by changing the parameters such as layer thickness, roller speed, sintering time and sintering temperature of the X1-Lab binder jet additive manufacturing printer. The samples were printed 80% stainless steel 316 mixed with 20% Calcium Phosphate Tribasic by volume. Eight experiments were attempted to print according to the fractional factorial design of experiment. The effects of changing parameters on the mechanical properties of the new bio-composite was tested using ASTM E-09 compressive strength standards. The compression testing …