Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

3,324 Full-Text Articles 1,849 Authors 5,062,627 Downloads 82 Institutions

All Articles in Applied Mechanics

Faceted Search

3,324 full-text articles. Page 6 of 36.

Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller 2019 University of Arkansas, Fayetteville

Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller

Theses and Dissertations

Materials with features at the nanoscale can provide unique mechanical properties and increased functionality when included as part of a nanocomposite. This dissertation utilizes computational methods at multiple scales, including molecular dynamics (MD) and density functional theory (DFT), and the coupled atomistic and discrete dislocation multiscale method (CADD), to predict the mechanical properties of nanocomposites possessing nanomaterials that are either 1-D (carbyne chains), 2-D (graphene sheets), or 3-D (Al/amorphous-Si core-shell nanorod).

The MD method is used to model Ni-graphene nanocomposites. The strength of a Ni-graphene nanocomposite is found to improve by increasing the gap between the graphene sheet and ...


Motor Control Systems Analysis, Design, And Optimization Strategies For A Lightweight Excavation Robot, Austin Jerold Crawford 2019 University of Arkansas, Fayetteville

Motor Control Systems Analysis, Design, And Optimization Strategies For A Lightweight Excavation Robot, Austin Jerold Crawford

Theses and Dissertations

This thesis entails motor control system analysis, design, and optimization for the University of Arkansas NASA Robotic Mining Competition robot. The open-loop system is to be modeled and simulated in order to achieve a desired rapid, yet smooth response to a change in input. The initial goal of this work is to find a repeatable, generalized step-by-step process that can be used to tune the gains of a PID controller for multiple different operating points. Then, sensors are to be modeled onto the robot within a feedback loop to develop an error signal and to make the control system self-corrective ...


Numerical Investigation Of Coalescence-Induced Self-Propelled Behavior Of Droplets On Non-Wetting Surfaces And Wedged Surfaces., Yan Chen 2019 University of Louisville

Numerical Investigation Of Coalescence-Induced Self-Propelled Behavior Of Droplets On Non-Wetting Surfaces And Wedged Surfaces., Yan Chen

Electronic Theses and Dissertations

When small drops coalesce on a superhydrophobic surface, the merged drop can jump away from the surface due to the surface energy released during the coalescence. This self-propelled behavior has been observed on various superhydrophobic surfaces and has potential applications in areas related to the heat and mass transfer, such as heat exchangers, anti-icing and anti-frost devices, thermal management and water harvesting. The jumping velocity model was obtained based on published experimental data and the balance of various energy terms described in previous studies. However, the self-propelled mechanism is still not fully understood. In this study, the self-propelled droplet phenomenon ...


Silicone Tadpole: Research Into Soft Bodies, Danielle Fernandez 2019 University of Arkansas, Fayetteville

Silicone Tadpole: Research Into Soft Bodies, Danielle Fernandez

Mechanical Engineering Undergraduate Honors Theses

In this thesis, research is conducted in the area of soft robotics by building a soft tadpole that can deform with a specific air pressure. The goal is to mimic the motion of an organic tadpole in respect to its S-shaped tail movement. The angle of deformation, derived from material mechanic theories, ranges from 45 to 80 degrees for this type of movement. The design includes a head compartment which acts as a tank to transfer nitrogen pressure and a tail section that receives the said pressure and bends as a result. The tail section was designed with two rows ...


Torch Mounted Wire Nipper, Steven D. Patrick, Matt Montgomery, Ben Rouse, Garrett D. Foust 2019 University of Tennessee, Knoxville

Torch Mounted Wire Nipper, Steven D. Patrick, Matt Montgomery, Ben Rouse, Garrett D. Foust

Chancellor’s Honors Program Projects

No abstract provided.


Final Design Report For The Bioburden Pre-Cleaning Device And Dr. Mark Rasnake At The University Of Tennessee Medical Center, Katherine Elizabeth Stiles, Megan Pitz, Kayla Franklin, Simran Dayal, Austin Bullock 2019 University of Tennessee

Final Design Report For The Bioburden Pre-Cleaning Device And Dr. Mark Rasnake At The University Of Tennessee Medical Center, Katherine Elizabeth Stiles, Megan Pitz, Kayla Franklin, Simran Dayal, Austin Bullock

Chancellor’s Honors Program Projects

No abstract provided.


Transferring Power Through A Magnetic Couple, Nickolas Cruz Villalobos Jr. 2019 Linfield College

Transferring Power Through A Magnetic Couple, Nickolas Cruz Villalobos Jr.

Senior Theses

Properties of several working magnetic coupled rotors have been measured and their performance compared to theoretical models. Axial magnetic couplers allow rotors to work within harsh environments, without the need for seals, proper alignment, or overload protection on a motor. The influence of geometrical parameters, such as distance from the center of the rotors, polarity arrangement, and the number of dipole pairs were experimentally tested. These results can be used to improve rotor designs, to increase strength and efficiency.


Effects Of Bio-Composites In Corrugated Sandwich Panels Under Edgewise Compression Loading, Jalen Christopher Mano 2019 California Polytechnic State University, San Luis Obispo

Effects Of Bio-Composites In Corrugated Sandwich Panels Under Edgewise Compression Loading, Jalen Christopher Mano

Master's Theses

Present day composite sandwich panels provide incredible strength. Their largest problem, however, is early bonding failure between the core and the skin. This is due to the low bonding surface area of present cores like honeycomb. Corrugated structures could provide a remedy for this with their much larger bonding surface area. Corrugated structures have extreme mechanical properties deeming them particularly useful in aerospace and automotive applications. However, previous research has shown that the stiffness of carbon fiber causes debonding and drastic failure when used as both a core and a skin. Bio-composites have properties that could strengthen the corrugated sandwich ...


Final Design Report For Human Powered Vehicle Drivetrain Project, Derek Fromm, Luke Opitz, Michael Juri, Olivier Côté 2019 California Polytechnic State University, San Luis Obispo

Final Design Report For Human Powered Vehicle Drivetrain Project, Derek Fromm, Luke Opitz, Michael Juri, Olivier Côté

Mechanical Engineering

The Cal Poly Human Powered Vehicle Club is building a bike to surpass 61.3 mph in 2019. The club and their mentor, George Leone, have proposed a senior project to design, build, and test the drivetrain for this year’s human powered vehicle. Research into human powered vehicles and their drivetrains has shown that the power that a rider can output and the efficiency at which the rider can pedal depend extensively on the design of the drivetrain. Despite the existence of standard bicycle drivetrain designs, the senior project team has found that the best design to meet the ...


A Constructal Approach To The Design Of Inflected Airplane Wings, Shanae Powell 2019 Florida International University

A Constructal Approach To The Design Of Inflected Airplane Wings, Shanae Powell

FIU Electronic Theses and Dissertations

Aeroelastic instabilities such as flutter can be accurately captured by state-of-the-art aeroelastic analysis methods and tools. However, these tools and methods fall short in exposing the reasons behind the occurrence of such instabilities. In this research, the constructal law is used to discover the main cause of the variation in the flutter speed and stress distribution for inflected aircraft wings when compared to its uninflected counterpart. This law considers the design as a physics phenomenon and uses an evolutionary flow principle to explain and predict the occurrence of energy flow configurations (i.e. the flow of stresses throughout the structure ...


Application Of Computational Tools To Spaghetti-Based Truss Bridge Design, Jin Xu, Jiliang Li, Nuri Zeytinoglu, Jinyuan Zhai 2019 Purdue University Northwest

Application Of Computational Tools To Spaghetti-Based Truss Bridge Design, Jin Xu, Jiliang Li, Nuri Zeytinoglu, Jinyuan Zhai

ASEE IL-IN Section Conference

Application of Computational Tools to Spaghetti-Based Truss Design

Statics and Strength of Materials are two foundational courses for Mechanical/Civil Engineering. In order to assist students in better understanding and applying concepts to a meaningful design task, SolidWorks and theoretical calculation were used for a spaghetti-bridge design contest with the constraints of given maximum weight and allowable support-material weight. As the first step of this iterative designing process, both extrude feature and structural member were introduced to model planar bridge trusses. Then SolidWorks’ Statics module was used to run FEA analysis of the structural performance in efforts to optimize the ...


Analysis Of Dynamic Behaviour Of A Tensioned Carbon Nanotube In Thermal And Pressurized Environments, Ahmed Yinusa, Gbeminiyi Sobamowo 2019 University of Lagos

Analysis Of Dynamic Behaviour Of A Tensioned Carbon Nanotube In Thermal And Pressurized Environments, Ahmed Yinusa, Gbeminiyi Sobamowo

Karbala International Journal of Modern Science

In this paper, the dynamic behaviour of a tensioned single-walled carbon nanotubes (SWCNT) in thermal and pressurized environments is investigated analytically. With the applications of Bernoulli-Euler and thermal elasticity mechanics theories, the governing equation of motion are developed and solved using Laplace and Fourier transforms. The results of the close form solution in this work are in excellent agreements with past results in literature. From the parametric studies, it is established that as the magnitude of the pressure distribution at the surface increases, the deflection associated with the nanotube increases at any mode of vibration. However, a corresponding increase in ...


Investigation Of Design, Manufacture, Analysis, And Test Of A Composite Connecting Rod Under Compression, Thomas Juhl Rohrbach 2019 California Polytechnic State University, San Luis Obispo

Investigation Of Design, Manufacture, Analysis, And Test Of A Composite Connecting Rod Under Compression, Thomas Juhl Rohrbach

Master's Theses

Composite materials hold great potential for the replacement of traditional materials in machines utilized on a daily basis. One such example is within an engine block assembly where massive components inherently reduce the efficiency of the system they constitute. By replacing metal elements such as connecting rods, cylinder caps, or a crank shaft with composite alternatives, a significant increase in performance may be achieved with respect to mechanical strength, thermal stability, and durability, while also reducing mass. Exploration of this technology applied to a connecting rod geometry was investigated through a combination of process development, manufacturing, numerical analysis and testing ...


Composite Recycler: Frame, Alfonso Olivera 2019 Central Washington University

Composite Recycler: Frame, Alfonso Olivera

All Undergraduate Projects

How can composites be recycled? The Composite Recycler is an ongoing project that started in September 2017. The purpose of this project was to create a machine that will delaminate the composites, cut them, and heat them up to separate the resin from the composites so they can be recycled. A group was put together for the 2018-2019 academic year to further the project as a whole improve the operation of the device. The existing base was used as well as the cutter and the power sources. The upgrades included; a housing to support the transport rollers and changing from ...


Custom Designed Wall Mounted Shop Crane, Bradley Lewis 2019 Central Washington University

Custom Designed Wall Mounted Shop Crane, Bradley Lewis

All Undergraduate Projects

The objective of this project was to design and fabricate a custom wall mounted jib crane to specific, non-standard dimensions. The crane was designed to be industry rated for 2000 pounds, rotate at least 180 degrees, and be designed to have a maximum boom length tailored to the specific installation site. Two potential installation sites and purposes were selected for construction: inside the bay doors of a fabrication shop, intended to transfer large pieces of material to and from a plasma table, and inside a car maintenance garage, intended to lift and remove engines and transmissions from cars.

Design of ...


Stair Climbing Hand Truck, James McPherson 2019 Central Washington University

Stair Climbing Hand Truck, James Mcpherson

All Undergraduate Projects

Abstract

Getting a heavy object up a flight of stairs usually requires a team of two or more people. Even with a team of people, the task is often still difficult, dangerous, and possibly insurmountable by one person. This problem is especially prevalent in for those who are moving into apartment complexes. Most apartment complexes have many buildings with two or more floors of living quarters, and elevators are often missing. This project sought to offer a solution to this problem. The solution in question; a motorized hand-truck with 2, trigonal planar pinwheels in place of the stock wheels. The ...


Autojack - Hydraulic Powertrain System, Tyce Vu 2019 Central Washington University

Autojack - Hydraulic Powertrain System, Tyce Vu

All Undergraduate Projects

A primary problem for mechanics and automotive enthusiasts is the risk associated with lifting and securing a vehicle with conventional jack stands. Often times, improper jack-stand installation results in the vehicle collapsing unexpectedly, causing injury and/or death. This problem can be minimized through the application of a newly re-designed vehicle lifting system. The conventional method for lifting cars is time consuming and can be unsafe in many circumstances. A better, safer, and more efficient lift design was needed; the AutoJack. The approach of the AutoJack design was entirely focused on the safety of lifting a vehicle. Safety was improved ...


Recumbent Bicycle Balancing Aid, James Hager 2019 The University of Akron

Recumbent Bicycle Balancing Aid, James Hager

Williams Honors College, Honors Research Projects

For our senior design project, our team will be consulting to create a balancing aid system intended for the recumbent bicycle shown below in Figure 1. The owner of the bicycle is Robert Henderson, a former United States Navy sailor from Northeast Ohio who picked up biking and skiing while he was stationed in Maine in the late 80’s. While there, he took to the mountains on the rugged terrain and brought this passion of biking back home to share with his wife, Johanna once he completed his service to his country. Biking became an integral part of the ...


Computational And Experimental Investigation On The Wetting Behavior Of Droplet-Fiber Systems, Hossain Aziz 2019 Virginia Commonwealth University

Computational And Experimental Investigation On The Wetting Behavior Of Droplet-Fiber Systems, Hossain Aziz

Theses and Dissertations

Interaction of a liquid droplet and a fiber or layer of fibers is ubiquitous in nature and in a variety of industrial applications. It plays a crucial role in fog harvesting, coalescence filtration, membrane desalination, self-cleaning and fiber based microfluidics, among many others. This work presents a quantitative investigation on the interactions of a droplet with a fiber or layers of fibers. More precisely, the present work is focused on 1) predicting the effects of fiber’s size and material on its ability to withhold a droplet against external forces and on the liquid residue left on the fiber after ...


Optimization And Comparison Of Over-Expanded And Other High Efficiency Four-Stroke Spark-Ignited Boosted Engines, Zhuyong Yang 2019 Michigan Technological University

Optimization And Comparison Of Over-Expanded And Other High Efficiency Four-Stroke Spark-Ignited Boosted Engines, Zhuyong Yang

Dissertations, Master's Theses and Master's Reports

Recent fuel economy and emission regulations are the major concern of the research and development of modern internal combustion engine. Such technologies include variable valve timing (VVT), direct injection (DI), turbocharging, downsizing, and over-expanded cycle are used by many manufacturers to improve engine fuel economy or increase power density.

Current Atkinson cycle technology in the production engine is mainly realized by an advanced valvetrain system to reduce the effective compression ratio while maintaining the same expansion ratio. Another approach to realize over-expanded cycle engine is to utilize a multi-link cranktrain mechanism. Although the Atkinson cycle was originally patented in the ...


Digital Commons powered by bepress