Open Access. Powered by Scholars. Published by Universities.®

Electro-Mechanical Systems Commons

Open Access. Powered by Scholars. Published by Universities.®

799 Full-Text Articles 1,712 Authors 482,573 Downloads 81 Institutions

All Articles in Electro-Mechanical Systems

Faceted Search

799 full-text articles. Page 1 of 37.

Northrop Grumman Collaboration Project, Nikkia Psomas-Sheridan, Santiago Robles, Ben Elkayam, Benjamin Ulfhake 2023 California Polytechnic State University, San Luis Obispo

Northrop Grumman Collaboration Project, Nikkia Psomas-Sheridan, Santiago Robles, Ben Elkayam, Benjamin Ulfhake

Mechanical Engineering

The Northrop Grumman Collaboration Project (NGCP) is a collaborative club project sponsored by Northrop Grumman for the students of Cal Poly San Luis Obispo (CPSLO) and Cal Poly Pomona (CPP) to create a fleet of vehicles to aid in the simulated rescue of stranded hiker. The CPSLO club is responsible for delivering an autonomous flight vehicle that can suppress a fire and retrieve a payload. Mechanical Design Team of the CPSLO team was responsible for the design of the frame, electronics housing, and payload and fire suppression systems.


Weed Robot, Kaela Stern, Lewis Kanagy, Claire Franz, Carlos Rodriguez Orozco, Jackie Chen, Sachi Hiji, Ayush Kakkanat, William Ta 2023 California Polytechnic State University, San Luis Obispo

Weed Robot, Kaela Stern, Lewis Kanagy, Claire Franz, Carlos Rodriguez Orozco, Jackie Chen, Sachi Hiji, Ayush Kakkanat, William Ta

Mechanical Engineering

Team Weed Scouts has completed our work on a weed-cutting robot for the Girl Scouts of California’s Central Coast. The final robot build provides a solid foundation that can be built and improved upon by future teams. We have completed the robot base and structure, including the chassis, drivetrain, and robot shell. We also completed manufacturing a weed storage bin and canvas cover for the robot. Additionally, we have built a weed scooper, the mechanism that cuts weeds and transports them into a storage compartment. The electronics and programming for remote control of the robot are also implemented. After some …


Sky Survey Radio Telescope, Jack E. McGuigan 2023 California Polytechnic State University, San Luis Obispo

Sky Survey Radio Telescope, Jack E. Mcguigan

Electrical Engineering

This document outlines the design of a radio telescope designed to perform hydrogen line sky surveys. The telescope produces radio images mapping the intensity and relative velocities of hydrogen concentrations to their sky coordinates. Over the course of a day, the telescope images the regions of space visible to it, allowing sky survey imagery to be updated daily. Sky survey images are comprised of an array of pixels corresponding to specific sky coordinates. Each 8-bit RGB pixel contains information on the concentrations of hydrogen in the brightness and relative velocity in the color. Radio images mapping the concentrations and velocities …


Power Thyristor Controller For Speed Control Of Dc Motor, Alejandra Zapata, Morgan Erich Boehme, Abdullah Mohammed Awidah, Payton Robert Chalstrom 2023 California Polytechnic State University, San Luis Obispo

Power Thyristor Controller For Speed Control Of Dc Motor, Alejandra Zapata, Morgan Erich Boehme, Abdullah Mohammed Awidah, Payton Robert Chalstrom

Electrical Engineering

In this work, a Power Thyristor Controller for Speed Control of DC Motor has been developed with the purpose of replacing an existing simulation experiment, aiming to effectively implement the principle of learning by doing. The primary objective of the experiment setup is to illustrate the fundamental principles and operational mechanisms underlying the firing angle and controlled bridge rectifier. The new experiment is taking advantage of the existing FCRO4100 Single Phase Firing Board that was donated to the University by ENERPRO. The pre-programmed microcontroller is connected to the thyristor bridge rectifier that’s powered by 24VAC. Additionally, a DC motor will …


In-Situ Mechanical Tester, Andrrew Murach, Gustavo Marquez, Kosimo Tonn, Jake Vormbaum 2023 California Polytechnic State University, San Luis Obispo

In-Situ Mechanical Tester, Andrrew Murach, Gustavo Marquez, Kosimo Tonn, Jake Vormbaum

Mechanical Engineering

Over the course of the 2022-23 Cal Poly SLO school year, a small tensile tester device was developed specifically for Dr. Long Wang to test thin film materials under a microscope and generate accurate force versus displacement graphs. A tensile tester was manufactured using purchased and machined components, electronics were consolidated in a separate box and connected, and a program and user interface were written to control the motion, provide custom inputs, and organize useful data for the researcher. Tests were conducted to compare the performance of the device to universal tensile testers available in the Composites lab. The device …


Rapid Composter, Shannon Shinozaki, Avin Atencio, Jonathan Fraser, Lukas Kolbl, Russell Occhipinti 2023 California Polytechnic State University, San Luis Obispo

Rapid Composter, Shannon Shinozaki, Avin Atencio, Jonathan Fraser, Lukas Kolbl, Russell Occhipinti

Mechanical Engineering

This project was created with the intent of automatically composting equine bio waste to be reused as plant fertilizer. The system consists of four subsystems: power generation and storage, automatic controls, aeration, and structure. Each subsystem may be manufactured independently, then put together. This system will not have access to power outlets, so it was designed to be solar-powered.


Treadmill Platform For Quadrupedal Robots, Baxter J. Bartlett, Jack F. Butler, Phillip A. Shafik, Tarun S. Ganamur 2023 California Polytechnic State University, San Luis Obispo

Treadmill Platform For Quadrupedal Robots, Baxter J. Bartlett, Jack F. Butler, Phillip A. Shafik, Tarun S. Ganamur

Mechanical Engineering

Cal Poly Legged Robots, led by Professor Refvem and Professor Xing, has been leading Cal Poly’s attempts to simulate, produce, and test their legged robots. The initial testing of the locomotion of these robots can be dangerous to the robot since any bugs in the code could cause the robot to fall over and harm itself. Our responsibility as a team was to deliver a portable platform for testing the locomotion capabilities containing a fall prevention mechanism. In short, we have designed a platform for this purpose that consists of a treadmill surrounded by a wheeled chassis with a system …


Animatronic Monarch Butterfly: Mechanical System, Janine Rae Moreno, Enrico Cruz, Alexia Murphy, Lakshmanan Muthukaruppan 2023 California Polytechnic State University, San Luis Obispo

Animatronic Monarch Butterfly: Mechanical System, Janine Rae Moreno, Enrico Cruz, Alexia Murphy, Lakshmanan Muthukaruppan

Mechanical Engineering

This report describes the design, manufacturing, and design verification of an interactive animatronic monarch butterfly created by a team of mechanical and computer engineering students for the Girl Scouts of California's Central Coast. The purpose of the project is to engage Girl Scouts in learning about monarch butterflies and provide hands-on experience in robotics and STEM. The report covers design changes, manufacturing processes, and assembly of various components, including the butterfly body, wings, legs, and electronic housing. The software and electronics used in the project are also briefly discussed, as the computer engineering team was responsible for the software and …


Damage Identification In 3d Printed Metal Parts Using Deep Learning, Romaine Byfield, Alireza Modir, Ibrahim Tansel, Raniero Plaza 2023 Florida International University

Damage Identification In 3d Printed Metal Parts Using Deep Learning, Romaine Byfield, Alireza Modir, Ibrahim Tansel, Raniero Plaza

36th Florida Conference on Recent Advances in Robotics

An active Structural Health Monitoring (SHM) method called Surface Response to Excitation (SuRE), is used in this study to detect and quantify the damages created by a milling operation on additively manufactured metal plates. This method entails bonding two piezoelectric disks to the test specimens, one to excite it with surface waves from one end of the plate, and the other to sense the dynamic response to excitation at the other end. A sweep sine wave with a duration of 1 ms, ranging from 50-120 kHz is used as the excitation signal. Five stainless steel plates of identical size (195×54×2.5 …


Assistive Robotic Platform For Non‐Urgent Household Tasks: A New Design, Amanda Serger, Normandy Tanguilan, Hakki Erhan Sevil 2023 University of West Florida

Assistive Robotic Platform For Non‐Urgent Household Tasks: A New Design, Amanda Serger, Normandy Tanguilan, Hakki Erhan Sevil

36th Florida Conference on Recent Advances in Robotics

Humans overcome minor household inconveniences daily without fully recognizing how challenging these tasks could be for individuals such as elderly people or people with disabilities. Those people often times struggle to complete tasks, for instance opening a door or reaching for an item, leading them to rely on caregivers for help. During the COVID-19 pandemic, this caregiver support becomes an unsafe and unreliable solution that can result in a greater risk, thus the need for another solution arises: robotic technology. Recent developments in the robotics field have paved the way for this research, aiming to design a home assistance robot …


Laser Stabilization Through Optical Turbulence, Liam Vanderschaaf 2023 Clemson University

Laser Stabilization Through Optical Turbulence, Liam Vanderschaaf

All Theses

Laser jitter presents a significant issue in the fields of laser communication and sensing. There are two main categories of positional noise in regards to the instantaneous centroid of a laser propagating over long distances: jitter resulting from optical turbulence and jitter resulting from mechanical vibrations. Optical turbulence was generated using Clemson University’s Variable Turbulence Generator (VTG). The VTG is capable of creating a desired level of optical turbulence that is comparable to atmospheric conditions with fried parameters greater than 0.3 cm. A gaussian laser was transmitted through the VTG and a system of Fast Steering Mirrors and Position Sensing …


Metals And Alloys As Catalytic Hosts Of Sulfur Cathode For Lithium-Sulfur Batteries, Zhen-Yu Wang, Xue-Ping Gao 2023 Institute of Science and Technology, China Three Gorges Corporation, Beijing 101100, China

Metals And Alloys As Catalytic Hosts Of Sulfur Cathode For Lithium-Sulfur Batteries, Zhen-Yu Wang, Xue-Ping Gao

Journal of Electrochemistry

Lithium-sulfur batteries are recognized as one of the most promising next-generation energy storage devices, owing to the high theoretical energy density of 2600 Wh·kg–1. However, their application has been seriously hindered by the sluggish electrochemical reaction kinetics of elemental sulfur and discharged products (Li2S2/Li2S), and the notorious “shuttle effect” of soluble intermediate lithium polysulfide species, leading to poor cycle stability, low sulfur utilization and inferior coulombic efficiency. Introducing catalytic hosts into sulfur cathode is an efficient path to propel the conversion of sulfur-contained species, thus preventing the dissolution and loss of active-sulfur …


Cobalt/Carbon Composites As Sulfur Hosts For High-Performance Lithium-Sulfur Batteries, Yun-Rui Yang, Huan-Huan Dong, Zhi-Qiang Hao, Xiang-Xi He, Zhuo Yang, Lin Li, Shu-Lei Chou 2023 1Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China 2Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, Zhejiang 325035, China

Cobalt/Carbon Composites As Sulfur Hosts For High-Performance Lithium-Sulfur Batteries, Yun-Rui Yang, Huan-Huan Dong, Zhi-Qiang Hao, Xiang-Xi He, Zhuo Yang, Lin Li, Shu-Lei Chou

Journal of Electrochemistry

Lithium-sulfur (Li-S) battery is one of the promising energy storage devices because of its high energy density. However, the sulfur cathode suffers from sluggish electrochemical reaction kinetics, slow charge transfer, large volume expansion and severe shuttle effect of lithium polysulfides inevitably resulting in low reversible capacity, poor rate performance and short cycle life, limiting its practical applications. Herein, the recent progress of cobalt/carbon composites, including cobalt nanoparticles and cobalt single atoms, as the sulfur host materials in Li-S batteries is overviewed. In general, cobalt plays the role of electrocatalyst, which inhibits the shuttle effect of lithium polysulfides, accelerates the electrochemical …


Recent Advances Of Functional Electrolyte Additives For Lithium-Sulfur Batteries, Xiu-Qing Zhang, Shuai Tang, Yong-Zhu Fu 2023 College of Chemistry, Zhengzhou University, Zhengzhou, PR China

Recent Advances Of Functional Electrolyte Additives For Lithium-Sulfur Batteries, Xiu-Qing Zhang, Shuai Tang, Yong-Zhu Fu

Journal of Electrochemistry

Lithium-sulfur (Li-S) batteries have become one of the most promising next-generation battery systems due to their high energy density and low cost. However, the application of Li-S batteries still faces critical challenges, such as the low conductivities of S and Li2S, shuttle effect of polysulfides and dendrite growth of Li, etc. The optimization of the electrolyte can ameliorate the electrolyte|electrode interphase, conveniently regulating the parasitic reaction and improving the performance of the resultant batteries. The functional additives in electrolytes provide chances to tune the interphase and even the redox mechanism to improve the performance of the batteries. In …


Author Spotlight, Ren-Jie Chen, Jia-jia Chen, Zhong Jin 2023 Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China; Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, China

Author Spotlight, Ren-Jie Chen, Jia-Jia Chen, Zhong Jin

Journal of Electrochemistry

No abstract provided.


Ultraviolet-Initiated In-Situ Cross-Linking Of Multifunctional Binder Backbones Enables Robust Lithium-Sulfur Batteries, Sha Li, Xiao Zhan, Gu-Lian Wang, Hui-Qun Wang, Wei-Ming Xiong, Li Zhang 2023 State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, Fujian, China

Ultraviolet-Initiated In-Situ Cross-Linking Of Multifunctional Binder Backbones Enables Robust Lithium-Sulfur Batteries, Sha Li, Xiao Zhan, Gu-Lian Wang, Hui-Qun Wang, Wei-Ming Xiong, Li Zhang

Journal of Electrochemistry

Lithium-sulfur (Li-S) batteries show attractive prospects owing to their high theoretical energy density, but their commercialization still faces such challenges as lithium polysulfides shuttling, severe volume change and considerable polarization. These stubborn issues place higher demands on each component in the battery, such as the development of multifunctional binders with superior mechanical properties. Herein, ethoxylated trimethylolpropane triacrylate was firstly introduced into sulfur cathodes, and in-situ cross-linked by ultraviolet (UV) curing combined with traditional polyvinylidene difluoride binder (i.e., forming a binary binder, denoted as c-ETPTA/PVDF) to construct high-loading and durable Li-S batteries. The covalently cross-linked ETPTA framework not …


Preface To The Special Issue On Lithium-Sulfur Batteries, Jia-Jia Chen, Ren-Jie Chen, Zhong Jin 2023 College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Preface To The Special Issue On Lithium-Sulfur Batteries, Jia-Jia Chen, Ren-Jie Chen, Zhong Jin

Journal of Electrochemistry

No abstract provided.


Table Of Contents, 2023 Chinese Chemical Society | Xiamen University

Table Of Contents

Journal of Electrochemistry

No abstract provided.


Optical Fiber Tip Micro Anemometer [U.S. Patent Us11635315b2], Hengky Chandrahalim, Jeremiah C. Williams 2023 Air Force Institute of Technology

Optical Fiber Tip Micro Anemometer [U.S. Patent Us11635315b2], Hengky Chandrahalim, Jeremiah C. Williams

Faculty Publications

A passive microscopic flow sensor includes a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fiber. The three-dimensional microscopic optical structure includes a post attached off-center to and extending longitudinally from the cleaved tip of the optical fiber. A rotor of the three-dimensional microscopic optical structure is received for rotation on the post. The rotor has more than one blade. Each blade has a reflective undersurface that reflects a light signal back through the optical fiber when center aligned with the optical fiber, the blades of the rotor shaped to rotate at a rate related to …


Implementation Of Static Rfid Landmarks In Slam For Planogram Compliance, Brennan L. Drake 2023 Georgia Southern University

Implementation Of Static Rfid Landmarks In Slam For Planogram Compliance, Brennan L. Drake

Honors College Theses

Autonomous robotic systems are becoming increasingly prevalent in everyday life and exhibit robust solutions in a wide range of applications. They face many obstacles with the foremost of which being SLAM, or Simultaneous Localization and Mapping, that encompasses both creation of the map of an unknown environment and localization of the robot in said environment. In this experiment, researchers propose the use of RFID tags in a semi-dynamic commercial environment to provide concrete landmarks for localization and mapping in pursuit of increased locational certainty. With this obtained, the ultimate goal of the research is to construct a robotics platform for …


Digital Commons powered by bepress