Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

1,121 Full-Text Articles 1,684 Authors 5,580,154 Downloads 98 Institutions

All Articles in Applied Mechanics

Faceted Search

1,121 full-text articles. Page 8 of 43.

Influence Of Extracellular Matrix Stiffness And Topography On Neuronal Cell Behavior And Neurite Outgrowth, Mohan Yasodharababu 2021 University of Arkansas, Fayetteville

Influence Of Extracellular Matrix Stiffness And Topography On Neuronal Cell Behavior And Neurite Outgrowth, Mohan Yasodharababu

Graduate Theses and Dissertations

The focus of regeneration therapy for traumatic brain injuries and Alzheimer's disease is on the promotion and growth of neuronal cells. In vitro research attempts to improve this by modifying the stiffness and topography of the extracellular matrix (ECM). However, the limitations of in vitro experiments make it difficult to control the individual factors influencing neuronal cell growth. A computational model can be used to decouple individual factors and study them individually to gain a better understanding of the mechanics between the neuronal cell and ECM, which will aid in the design of in vitro experimental studies.

This study develops …


Material Property Heterogeneity In Dimensional Lumber And Its Relationship To Mass Timber Performance, Fiona O'Donnell 2021 University of Massachusetts Amherst

Material Property Heterogeneity In Dimensional Lumber And Its Relationship To Mass Timber Performance, Fiona O'Donnell

Doctoral Dissertations

According to the Environmental Protection Agency, buildings account for 38% of the United States' carbon dioxide emissions, providing architects and structural engineers a unique opportunity to mitigate a significant factor driving climate change by implementing innovative and sustainable technology in infrastructure design. Wood and mass timber products are becoming an increasingly popular alternative building material due to their economic and environmental benefits. The natural growth of wood leads to highly heterogeneous material properties. Defects such as checks, knots, and localized slope of grain contribute to some of this variation; however, wood properties vary significantly even in clear wood. Using mass …


Harnessing The Mechanics Of Thin-Walled Metallic Structures: From Plate-Lattice Materials To Cold-Formed Steel Shear Walls, Fani Derveni 2021 University of Massachusetts Amherst

Harnessing The Mechanics Of Thin-Walled Metallic Structures: From Plate-Lattice Materials To Cold-Formed Steel Shear Walls, Fani Derveni

Doctoral Dissertations

Thin-walled structures have received a lot of interest during the last years due to their light weight, cost efficiency, and ease in fabrication and transportation, along with their high strength and stiffness. This dissertation focuses on the mechanical performance of thin-walled metallic structures from cold-formed steel shear walls and connections (PART I) to plate-lattice architected materials (PART II) via computational, experimental, and probabilistic methods. Cold-formed steel (CFS) shear walls subjected to seismic loads is the focus of PART I of this dissertation. An innovative three-dimensional shell finite element model of oriented strand board (OSB) sheathed CFS shear walls is introduced …


Fluid-Structure Interaction Of Nrel 5-Mw Wind Turbine, Mohamed Sayed Elkady Abd-Elhay 2021 The American University in Cairo AUC

Fluid-Structure Interaction Of Nrel 5-Mw Wind Turbine, Mohamed Sayed Elkady Abd-Elhay

Theses and Dissertations

Wind energy is considered one of the major sources of renewable energy. Nowadays, wind turbine blades could exceed 100 m to maximize the generated power and minimize produced energy cost. Due to the enormous size of the wind turbines, the blades are subjected to failure by aerodynamics loads or instability issues. Also, the gravitational and centrifugal loads affect the wind turbine design because of the huge mass of the blades. Accordingly, wind turbine simulation became efficient in blade design to reduce the cost of its manufacturing. The fluid-structure interaction (FSI) is considered an effective way to study the turbine's behavior …


Adjustable Head Tube Angle Headset, Glenn Petersen, Ben Harper, Josh Martin, Dylan Prins 2021 California Polytechnic State University, San Luis Obispo

Adjustable Head Tube Angle Headset, Glenn Petersen, Ben Harper, Josh Martin, Dylan Prins

Mechanical Engineering

This final design review report describes the design, manufacture, and test process of a bicycle headset capable of quickly and easily adjusting the effective head tube angle. The evolution of mountain bike geometry has forced bike designers to compromise between climbing and descending performance when choosing a head tube angle. A headset capable of quickly adjusting the effective head tube angle would allow riders to optimize their bike’s geometry for different stages of riding. This report details the research, idea generation, concept development and selection, design, manufacturing, and testing of our adjustable head tube angle headset.


Hands-On 3d Printed Dynamics Activities, Dakota Baker, Jacob Lindberg, Andrew Meyenberg, Junnior Rodriguez 2021 California Polytechnic State University, San Luis Obispo

Hands-On 3d Printed Dynamics Activities, Dakota Baker, Jacob Lindberg, Andrew Meyenberg, Junnior Rodriguez

Mechanical Engineering

The advancement of 3D printing has allowed everyday individuals to rapid prototype and manufacture in a more efficient, cost-effective, and timely manner. This has paved the way for a more adaptable educational model, by allowing instructors to easily access alternative instruments for teaching. By providing students with tangible tools, they will better be able to grasp complex principles. Dynamics professors need a way in which they can easily access these academic tools, transport them to and from class, and teach multiple dynamics principles through variations of a single 3D printed kit. Interviews with professors and students were conducted to gain …


Configurable Seat Track Latching Mechanism, Emily Sun, Kai Quizon, Rick Hall, Daniel Turn, Nicholas Holman, Alexander Kuznik, Jacob Winkler, Audrey Trejo, Phoebe Zeiss, Steven Kam 2021 California Polytechnic State University, San Luis Obispo

Configurable Seat Track Latching Mechanism, Emily Sun, Kai Quizon, Rick Hall, Daniel Turn, Nicholas Holman, Alexander Kuznik, Jacob Winkler, Audrey Trejo, Phoebe Zeiss, Steven Kam

Mechanical Engineering

The reconfigurable seating system is a flexible seating solution for transit vehicles that allows operators to change the configuration of the floor plan in a timely manner in order to accommodate change in needs. This project consists of three senior project teams each working on a component of the design: system, track & latch, and articulation. Descriptions of the responsibilities of each team will be discussed below.


Tensile Testing Environmental Chamber – Structural, Michael Ingel, Erik Soldenwagner, Austin Marshall, Lauren Schirle 2021 California Polytechnic State University, San Luis Obispo

Tensile Testing Environmental Chamber – Structural, Michael Ingel, Erik Soldenwagner, Austin Marshall, Lauren Schirle

Mechanical Engineering

Environmental chambers for tensile testing machines are used to study how a multitude of materials behave in extreme temperatures. These chambers provide the necessary information to innovate cutting edge technology for materials in fields such as aerospace. These chambers are often heavy and expensive requiring a significant amount of time and money just in the installation process alone. This report will serve to outline and define the design and fabrication of an environmental chamber, conducted by a team of four senior mechanical engineering students at California Polytechnic State University, San Luis Obispo. The goals of the project include a low-weight …


Cnc Feed Drive Control, Ryan J. Funchess, Caleb P. O'Gorman, Nick J. DeSimone, Juan M. Majano, Samuel K. Wong 2021 California Polytechnic State University, San Luis Obispo

Cnc Feed Drive Control, Ryan J. Funchess, Caleb P. O'Gorman, Nick J. Desimone, Juan M. Majano, Samuel K. Wong

Mechanical Engineering

This document serves as the Final Design Report (FDR) for a senior project developed by our team: four senior Mechanical Engineering students and one computer engineering student at California Polytechnic State University, San Luis Obispo (Cal Poly). While the project was completed for, and sponsored by, Professor Simon Xing of Cal Poly, the remainder of the university’s controls professors will be indirectly benefited from this project. Our goal was to design and implement a functional CNC Feed Drive to be used for educational demonstrations and data collection. This document discusses our early product research and benchmark goals, which established constraints …


Adaptive Vehicle Control, Brian L. Finger, Maria Vargas, Jacob T. Larson, Christopher J. Villa 2021 California Polytechnic State University, San Luis Obispo

Adaptive Vehicle Control, Brian L. Finger, Maria Vargas, Jacob T. Larson, Christopher J. Villa

Mechanical Engineering

This report presents the final design for our device made for Mrs. Laura Jagels. Mrs. Jagels, who has an above the knee amputation, needed a device that would allow her to operate a manual car in a safe and reliable way that still gives her the traditional driving experience. This report takes into consideration the shortcomings of current market devices that enable amputees to operate vehicles. From this research and through interviews with Mrs. Jagels, we were able to decide on our device specifications, giving us a basis to objectively evaluate designs. Ideation and concept prototype building was performed for …


Composite Pegboard, Asa J. Cusick, Luis Corrales, Joelle Hylton, Wyatt Pauley 2021 California Polytechnic State University, San Luis Obispo

Composite Pegboard, Asa J. Cusick, Luis Corrales, Joelle Hylton, Wyatt Pauley

Mechanical Engineering

Many of those with mobility limitations who are told they will need a wheelchair for the rest of their lives can actually begin to stand and walk again given the proper tools and support. The current design for a wheelchair seeking to support this process is overly complex, heavy, and exhibits some features that could potentially pose a serious health hazard to those using it. The scope of this project is to aid in the design of an adaptable composite wheelchair frame that can be both lightweight and strong, while still allowing for physical diversity of potential users. Through research …


F34 Beekeeper Assist, Kyle Ladtkow, Javier Guerra, Jose Velazquez, Ryan Heryford 2021 California Polytechnic State University, San Luis Obispo

F34 Beekeeper Assist, Kyle Ladtkow, Javier Guerra, Jose Velazquez, Ryan Heryford

Mechanical Engineering

Alejandro Jauregui is a veteran who now works as a commercial beekeeper. He lost both of his legs during his service. While his current prostheses allow him to fully complete his work, he has found that inspection of the bee boxes causes him severe hip and back pain. Bee box inspection is a critical task for beekeeping, especially since he maintains about 200 hives every day. Our senior project team was tasked with designing and building a device that would help him move the top bee box out of the way to allow for inspection. We performed preliminary research into …


Prediction Of In-Plane Stiffnesses And Thermomechanical Stresses In Cylindrical Composite Cross-Sections, Bryson M. Chan 2021 California Polytechnic State University, San Luis Obispo

Prediction Of In-Plane Stiffnesses And Thermomechanical Stresses In Cylindrical Composite Cross-Sections, Bryson M. Chan

Master's Theses

Accurate mechanical analysis of composite structures is necessary for the prediction of laminate behavior. Cylindrical composite tubes are a mainstay in many structural applications. The fundamental design of circular composite cross-sections necessitates the development of a comprehensive composite lamination theory. A new analytical method is developed to characterize the behavior of thin-walled composite cylindrical tubes using a modified plate theory. A generated numerical solver can predict properties such as axial stiffness, bending stiffness, layer stresses, and layer strains in composite tubes subjected to combined mechanical loading and thermal effects. The model accounts for the curvature by transforming and translating the …


Computational Design Of Nonlinear Stress-Strain Of Isotropic Materials, Askhad M.Polatov, Akhmat M. Ikramov, Daniyarbek Razmukhamedov 2021 National University of Uzbekistan Address:4, University Street, Tashkent 100174, Republic of Uzbekistan E-mail: asad3@yandex.ru, Phone: +998903715556,

Computational Design Of Nonlinear Stress-Strain Of Isotropic Materials, Askhad M.Polatov, Akhmat M. Ikramov, Daniyarbek Razmukhamedov

Chemical Technology, Control and Management

The article deals with the problems of numerical modeling of nonlinear physical processes of the stress-strain state of structural elements. An elastoplastic medium of a homogeneous solid material is investigated. The results of computational experiments on the study of the process of physically nonlinear deformation of isotropic elements of three-dimensional structures with a system of one- and double-periodic spherical cavities under uniaxial compression are presented. The influence and mutual influence of stress concentrators in the form of spherical cavities, vertically located two cavities and a horizontally located system of two cavities on the deformation of the structure are investigated. Numerical …


Motor Control-Based Assessment Of Therapy Effects In Individuals Post-Stroke: Implications For Prediction Of Response And Subject-Specific Modifications, Ashley Rice 2021 University of Tennessee, Knoxville

Motor Control-Based Assessment Of Therapy Effects In Individuals Post-Stroke: Implications For Prediction Of Response And Subject-Specific Modifications, Ashley Rice

Doctoral Dissertations

Producing a coordinated motion such as walking is, at its root, the result of healthy communication pathways between the central nervous system and the musculoskeletal system. The central nervous system produces an electrical signal responsible for the excitation of a muscle, and the musculoskeletal system contains the necessary equipment for producing a movement-driving force to achieve a desired motion. Motor control refers to the ability an individual has to produce a desired motion, and the complexity of motor control is a mathematical concept stemming from how the electrical signals from the central nervous system translate to muscle activations. Exercising a …


Process-Structure-Property Relationships In 3d-Printed Epoxy Composites Produced Via Material Extrusion Additive Manufacturing, Nadim S. Hmeidat 2021 University of Tennessee, Knoxville

Process-Structure-Property Relationships In 3d-Printed Epoxy Composites Produced Via Material Extrusion Additive Manufacturing, Nadim S. Hmeidat

Doctoral Dissertations

Extrusion-based additive manufacturing (AM) technologies, such as direct ink writing (DIW), offer unique opportunities to create composite materials and novel multi-material architectures that are not feasible using other AM technologies. DIW is a novel 3D-printing approach in which viscoelastic inks, with favorable rheological properties, are extruded through fine nozzles and patterned in a filament form at room temperature.

Recent developments in DIW of polymer composites have led to expanding the range of materials used for printing, as well as introducing novel deposition strategies to control filler orientation and create improved functional/structural composite materials. Despite these substantial advancements, the successful and …


An Investigation Of Testing Parameters On The Frictional Properties Of Patterned Core-Shell Nanostructures, Colin Phelan 2021 University of Arkansas, Fayetteville

An Investigation Of Testing Parameters On The Frictional Properties Of Patterned Core-Shell Nanostructures, Colin Phelan

Graduate Theses and Dissertations

Friction tests are a beneficial means to analyze the tribological characteristics and advantages of materials and textured surfaces. However, the selected test parameters can significantly influence the results. This work explores the significance of the friction testing parameters on the frictional performances of core-shell nanostructure-textured surfaces (CSNTSs). Several applied normal loads (10 μN, 100 μN, and 500 μN) and diamond counterface indenter tip radii (1 μm, 5 μm, and 20 μm) were selected for the testing of Al/diamond-like-carbon (DLC) and Al/amorphous silicon (a-Si) CSNTSs. The measured friction values of the CSNTSs were then compared to a matching Al/DLC film and …


Correlating Fracture Toughness And Surface Roughness For A Ductile Epoxy Adhered To Aluminum Substrates, Kurt Ryan Smith 2021 University of Tennessee, Knoxville

Correlating Fracture Toughness And Surface Roughness For A Ductile Epoxy Adhered To Aluminum Substrates, Kurt Ryan Smith

Masters Theses

Adhesively bonded joints are used across multiple disciplines as an efficient and cost effective method for reinforcing, repairing, or creating new structures. Sufficient understanding of the bond line characteristics of the adhesive is necessary to properly design a reliable bonded joint and ensure a long service life. It is well understood that surface preparation has a significant impact on these interface characteristics as a given level of surface roughness achieves mechanical interlocking between the resin and metal and is important to prevent premature interfacial failure [1]. The goal of this study is to characterize the fracture toughness values for an …


Mathematical Modeling Of A Two Wheeled Robotic Base, Kathryn Remell 2021 University of Arkansas, Fayetteville

Mathematical Modeling Of A Two Wheeled Robotic Base, Kathryn Remell

Mechanical Engineering Undergraduate Honors Theses

This thesis presents the concept of using a two wheeled robot on the moon and briefly explores the requirements for successful long term operation in a lunar environment. The mathematical model for the motion of a robot with two fixed wheels on a differential drive with in a global reference frame. The robot is assumed to be balancing a platform so the mathematical model to balance the platform with wheel motors is also developed and briefly evaluated.


Project Blipper, Peter Jacobs, Preston Delaware, Ryan Foster 2021 Kennesaw State University

Project Blipper, Peter Jacobs, Preston Delaware, Ryan Foster

Senior Design Project For Engineers

This project was sponsored by Clorox to design and create an automatic bottle-unscrambling system for possible implementation at their bottling plant in Chile. The objective was to use a robotic arm to unscramble bottles from an incoming conveyor belt and place them upright on an outbound conveyor belt. Throughout the research, design, and testing of solutions for this project, several design alternatives were found for each discipline, and will be presented to Clorox so that they can make an informed decision for how and if they want to move forward with implementation of this project.

The project was split into …


Digital Commons powered by bepress