Open Access. Powered by Scholars. Published by Universities.®

Systems and Integrative Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

141 Full-Text Articles 254 Authors 66,782 Downloads 48 Institutions

All Articles in Systems and Integrative Engineering

Faceted Search

141 full-text articles. Page 2 of 7.

Creating Reel Designs: Reflecting On Arthrogryposis Multiplex Congenita In The Community, Iris Layadi 2021 Purdue University

Creating Reel Designs: Reflecting On Arthrogryposis Multiplex Congenita In The Community, Iris Layadi

Purdue Journal of Service-Learning and International Engagement

Because of its extreme rarity, the genetic disease arthrogryposis multiplex congenita (AMC) and the needs of individuals with the diagnosis are often overlooked. AMC refers to the development of nonprogressive contractures in disparate areas of the body and is characterized by decreased flexibility in joints, muscle atrophy, and developmental delays. Colton Darst, a seven-year-old boy from Indianapolis, Indiana, was born with the disorder, and since then, he has undergone numerous surgical interventions and continues to receive orthopedic therapy to reduce his physical limitations. His parents, Michael and Amber Darst, have hopes for him to regain his limbic motion and are …


Mixed-Reality Visualization Environments To Facilitate Ultrasound-Guided Vascular Access, Leah Groves 2021 The University of Western Ontario

Mixed-Reality Visualization Environments To Facilitate Ultrasound-Guided Vascular Access, Leah Groves

Electronic Thesis and Dissertation Repository

Ultrasound-guided needle insertions at the site of the internal jugular vein (IJV) are routinely performed to access the central venous system. Ultrasound-guided insertions maintain high rates of carotid artery puncture, as clinicians rely on 2D information to perform a 3D procedure. The limitations of 2D ultrasound-guidance motivated the research question: “Do 3D ultrasound-based environments improve IJV needle insertion accuracy”. We addressed this by developing advanced surgical navigation systems based on tracked surgical tools and ultrasound with various visualizations. The point-to-line ultrasound calibration enables the use of tracked ultrasound. We automated the fiducial localization required for this calibration method such that …


Dimensionality Reduction For Classification Of Object Weight From Electromyography, Elnaz Lashgari, Uri Maoz 2021 Chapman University

Dimensionality Reduction For Classification Of Object Weight From Electromyography, Elnaz Lashgari, Uri Maoz

Psychology Faculty Articles and Research

Electromyography (EMG) is a simple, non-invasive, and cost-effective technology for measuring muscle activity. However, multi-muscle EMG is also a noisy, complex, and high-dimensional signal. It has nevertheless been widely used in a host of human-machine-interface applications (electrical wheelchairs, virtual computer mice, prosthesis, robotic fingers, etc.) and, in particular, to measure the reach-and-grasp motions of the human hand. Here, we developed an automated pipeline to predict object weight in a reach-grasp-lift task from an open dataset, relying only on EMG data. In doing so, we shifted the focus from manual feature-engineering to automated feature-extraction by using pre-processed EMG signals and thus …


Development Of A Wireless Telemetry Load And Displacement Sensor For Orthopaedic Applications, William Anderson 2021 The University of Western Ontario

Development Of A Wireless Telemetry Load And Displacement Sensor For Orthopaedic Applications, William Anderson

Electronic Thesis and Dissertation Repository

Due to sensor size and supporting circuitry, in vivo load and deformation measurements are currently restricted to applications within larger orthopaedic implants. The objective of this thesis is to repurpose a commercially available low-power, miniature, wireless, telemetric, tire-pressure sensor (FXTH87) to measure load and deformation for future use in biomechanical applications. The capacitive transducer membrane of the FXTH87 was modified, and a relationship was reported between applied compressive deformation and sensor signal value. The sensor package was embedded within a deformable enclosure to illustrate potential applications of the sensor for monitoring load. Finite element analysis was an effective tool to …


The Development Of An Instrument To Measure Transdermal Hydrogen Sulfide As A Way To Evaluate Microvascular Health In Humans, Benjamin Thomas Matheson 2021 University of New Mexico

The Development Of An Instrument To Measure Transdermal Hydrogen Sulfide As A Way To Evaluate Microvascular Health In Humans, Benjamin Thomas Matheson

Biomedical Engineering ETDs

Hydrogen sulfide (H2S) is a gasotransmitter critical in maintaining microcirculation homeostasis. Impaired microcirculation occurs in multiple disease states such as peripheral vascular disease, diabetes mellitus (DM), and hypertension. Early detection and identification of patients with DM who are at risk for heart attack, stroke and amputation due to microvascular disease is crucial. Human skin is an accessible vascular bed that provides an opportunity to non-invasively measure H2S, which could be used as a biomarker to evaluate microvascular health.

In this work, a novel H2S gas sensor, called the transdermal arterial gasotransmitter sensor (TAGSTM …


Nanomaterial-Based Biosensors For Detection Of Salmonella Typhimurium And Avian Influenza Virus H5n1 In Poultry, Xinge Xi 2021 University of Arkansas, Fayetteville

Nanomaterial-Based Biosensors For Detection Of Salmonella Typhimurium And Avian Influenza Virus H5n1 In Poultry, Xinge Xi

Graduate Theses and Dissertations

This research focused on developing biosensing method and biosensing device for rapid detection of pathogens in poultry: Salmonella Typhimurium and avian influenza virus H5N1. The first part of the dissertation reports an original research on the development of a portable biosensing device for Salmonella detection. The device was designed and constructed based on a previously developed optical biosensing method, using immuno-magnetic nanoparticles to specifically capture target bacteria, and immuno-quantum dot beads to label the target bacteria for fluorescence detection. All the actions of sample mixing, magnetic separation, and fluorescence detection were controlled automatically in a disposable microfluidic chip in the …


Synthesis And Performance Testing Of Ecm Fiber Scaffolds, Cassandra Reed 2021 University of Arkansas, Fayetteville

Synthesis And Performance Testing Of Ecm Fiber Scaffolds, Cassandra Reed

Graduate Theses and Dissertations

The progression of regenerative medicine has advanced the treatment of multiple illnesses and injuries throughout the years. A good example of the benefits of this research is the work that has gone into volumetric muscle loss (VML), where more than 20% of the muscle is loss. Skeletal muscle makes up 40% of the human body so a loss of that size greatly diminishes the strength, the flexibility, physiology, and quality of life of the injured individual. For that reason, various techniques are used to counteract the loss of structure and innate cellular signaling in order to circumvent that from happening. …


Developing A Lab-Scale Fluidized Bed Dryer System To Enhance Rough Rice Drying Process, Kaushik Luthra 2021 University of Arkansas, Fayetteville

Developing A Lab-Scale Fluidized Bed Dryer System To Enhance Rough Rice Drying Process, Kaushik Luthra

Graduate Theses and Dissertations

For more than half of the world's population, rice (Oryza sativa L.) is a staple meal. However, rice growers encounter difficulties supplying this demand, particularly in developing nations, where rice is susceptible to spoilage if the moisture content is not lowered to a safe level soon after harvest. As a result, traditional drying methods, such as sun drying and natural air drying, are commonly used by rice growers, particularly in underdeveloped nations. However, these procedures are time-consuming and can lead to rice spoilage. On the other hand, fluidized bed drying is a well-established technology that might give rice growers a …


Functional And Dysrhythmic Slow Waves In The Stomach - An In Silico Study, Md Ashfaq Ahmed 2021 Florida International University

Functional And Dysrhythmic Slow Waves In The Stomach - An In Silico Study, Md Ashfaq Ahmed

FIU Electronic Theses and Dissertations

Peristalsis, the coordinated contraction and relaxation of the muscles of the stomach, is important for normal gastric motility and is impaired in motility disorders. Coordinated electrical depolarizations that originate and propagate within a mutually coupled network of interstitial cells of Cajal (ICC) and smooth muscle cells of the stomach wall as a slow-wave, underly peristalsis. Normally, the gastric slow-wave (GSW) oscillates with a single period and uniform rostro-caudal lag, exhibiting network entrainment. Loss of entrainment in the coupled network and the resulting impairment in slow-wave propagation is associated with various gastric motility disorders. Our study provides an enhanced understanding of …


Portable Ventilator, Bradley C. Weeks, Jack W. Brewer, Sanders Sanabria 2021 California Polytechnic State University, San Luis Obispo

Portable Ventilator, Bradley C. Weeks, Jack W. Brewer, Sanders Sanabria

Electrical Engineering

The current COVID-19 pandemic has heavily impacted the healthcare system in the United States and elsewhere. The need for patients to have access to a hospital with a ventilator along with a shortage of ventilators for recovery and at-home care as a result of minimal hospital vacancy for patients has been greatly stressed. The presented problem is both an unmet demand and supply of portable and effective ventilators. Existing ventilators have many shortcomings that should be addressed: size, weight, cost, and complexity of current ventilators confines users to stay in a medical facility whilst being monitored by professionals. This both …


Microfluidic Electrical Impedance Spectroscopy System Automation And Characterization, Keaton Frahmann 2021 California Polytechnic State University, San Luis Obispo

Microfluidic Electrical Impedance Spectroscopy System Automation And Characterization, Keaton Frahmann

Master's Theses

In this work, a novel microfluidic cell culture platform capable of automated electrical impedance measurements and immunofluorescence and brightfield microscopy was developed for further in-vitro cellular research intended to optimize cell culture conditions. The microfluidic system design, fabrication, automation, and design verification testing are described. Electrical and optical measurements of the 16 parallel cell culture chambers were automated via a custom LabView interface. A proposed design change will enable gas diffusion, removing the need for an environmental enclosure and allow long-term cell culture experiments. This "lab on a chip" system miniaturizes and automates experiments improving testing throughput and accuracy while …


Development Of An Integrated Salt Cartridge-Reverse Electrodialysis (Red) Device To Increase Electrolyte Concentrations Of Human Blood Flow To Power Biomedical Devices, Caroline Campbell 2021 University of Arkansas, Fayetteville

Development Of An Integrated Salt Cartridge-Reverse Electrodialysis (Red) Device To Increase Electrolyte Concentrations Of Human Blood Flow To Power Biomedical Devices, Caroline Campbell

Chemical Engineering Undergraduate Honors Theses

Emerging technologies in nanotechnology and biomedical sciences have led to an increase in biomedical implantable devices including cardiac pacemakers, artificial organs, drug pumps, and sensors. These devices require continuous stable and reliable power to operate, which creates the demand for the need to find a safe, reliable, and stable power source. A promising avenue for a power source for these devices is a miniaturized reverse electrodialysis (RED) biopower cell design that utilizes the salinity differences between bloodstreams that flow inside the human body. Initial results of the RED system demonstrate that higher gradient salinity differences between streams lead to a …


Design Of Control Logic And The Human-Machine Interface For A Demonstration Plant Growth Chamber Implemented On A Programmable Logic Controller, Rachael Koehler 2021 University of Arkansas, Fayetteville

Design Of Control Logic And The Human-Machine Interface For A Demonstration Plant Growth Chamber Implemented On A Programmable Logic Controller, Rachael Koehler

Biological and Agricultural Engineering Undergraduate Honors Theses

This honors thesis covers the planning, development, and implementation of system controls and human-machine interface (HMI) for a demonstration plant growth chamber. The work is a continuation of an ongoing project to be used as an educational and recruiting tool manifesting the skills acquired from the Biological and Agricultural Engineering Department at the University of Arkansas’ College of Engineering. This work includes emergency controls, overall design interface, and controls for both the aeration and lighting subsystems of the growth chamber. Overall design interface controls established included development of two user modes, Administrator and Visitor. The Administrator user will have full …


Development Of A Real-Time Single-Lead Single-Beat Frequency-Independent Myocardial Infarction Detector, Harold Martin 2021 Florida International University

Development Of A Real-Time Single-Lead Single-Beat Frequency-Independent Myocardial Infarction Detector, Harold Martin

FIU Electronic Theses and Dissertations

The central aim of this research is the development and deployment of a novel multilayer machine learning design with unique application for the diagnosis of myocardial infarctions (MIs) from individual heartbeats of single-lead electrocardiograms (EKGs) irrespective of their sampling frequencies over a given range. To the best of our knowledge, this design is the first to attempt inter-patient myocardial infarction detection from individual heartbeats of single-lead (lead II) electrocardiograms that achieves high accuracy and near real-time diagnosis. The processing time of 300 milliseconds to a diagnosis is just at the time range in between extremely fast heartbeats of around 300 …


The Tierni Resistance Training System, Michael J. Hansen, Abigail M. Youngblood, Gabriel M. Johnson 2021 California Polytechnic State University, San Luis Obispo

The Tierni Resistance Training System, Michael J. Hansen, Abigail M. Youngblood, Gabriel M. Johnson

Biomedical Engineering

The purpose of the Tierni Resistance Training System project was to design and construct functional workout apparel that has built-in resistance. For this product, the key customer requirements we set out to address were most importantly material comfort and functionality, followed by stylishness, lack of latex, safety for injured and uninjured users, and washer safety. To meet these customer requirements, we started by researching current resistance training technology, and used the findings as a springboard for our own design development. After initial brainstorming, engineering specifications were generated based on the customer requirements. These specifications revolved around the thermal insulation, pressure, …


Nebulizer-Based Systems To Improve Pharmaceutical Aerosol Delivery To The Lungs, Benjamin M. Spence 2021 Virginia Commonwealth University

Nebulizer-Based Systems To Improve Pharmaceutical Aerosol Delivery To The Lungs, Benjamin M. Spence

Theses and Dissertations

Combining vibrating mesh nebulizers with additional new technologies leads to substantial improvements in pharmaceutical aerosol delivery to the lungs across therapeutic administration methods. In this dissertation, streamlined components, aerosol administration synchronization, and/or Excipient Enhanced Growth (EEG) technologies were utilized to develop and test several novel devices and aerosol delivery systems. The first focus of this work was to improve the poor delivery efficiency, e.g., 3.6% of nominal dose (Dugernier et al. 2017), of aerosolized medication administration to adult human subjects concurrent with high flow nasal cannula (HFNC) therapy, a form of continuous-flow non-invasive ventilation (NIV). The developed Low-Volume Mixer-Heater (LVMH) …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand 2021 CUNY City College

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …


Improving The Monitoring Of Post-Operative Patient Mobility, Owen T. Lacey, Alexandria Magyar-Averin, Elena Ewing, Samuel Elliott, Cameron Lazor 2021 University of Akron

Improving The Monitoring Of Post-Operative Patient Mobility, Owen T. Lacey, Alexandria Magyar-Averin, Elena Ewing, Samuel Elliott, Cameron Lazor

Williams Honors College, Honors Research Projects

Patient post-operative care is essential in attaining positive patient outcomes. To ensure proper blood circulation for recovery and healing is achieved, a patient's mobility is monitored. However, medical professionals aren't always available to continuously monitor patient progress. The clinical need for a medical device to monitor and quantify patient movement automatically is derived and addressed here. By designing a novel device and associated code, an engineering solution to this clinical need can be developed to monitor and improve patient post-operative outcomes in the absence of a medical professional. After completing research on the clinical need and gathering information from stakeholders …


Detection Of Nucleotides In Hydrated Ssdna Via 2-D H-Bn Nanopore With Ionic-Liquid/Salt-Water Interface, JungSoo Lee 2020 Southern Methodist University

Detection Of Nucleotides In Hydrated Ssdna Via 2-D H-Bn Nanopore With Ionic-Liquid/Salt-Water Interface, Jungsoo Lee

Multidisciplinary Studies Theses and Dissertations

Accomplishing slow translocation speed with high sensitivity has been the greatest mission for solid-state nanopore (SSN) to electrically detect nucleobases in single-stranded DNA (ssDNA). In this study, a method to detect nucleobases in ssDNA using a SSN is introduced by considerably slowing down the translocation speed and effectively increasing its sensitivity. The ultra-thin titanium dioxide (TiO2) coated hexagonal boron nitride (h-BN) nanopore was fabricated, along with an ionic-liquid [bmim][PF6]/2.0 M KCl aqueous (cis/trans) interfacial system, to increase both the spatial and the temporal resolutions. As the ssDNA molecules entered the nanopore, a …


An Investigation Into The Development Of A Low Cost, Easy To Use Seizure Analysis Tool., Cody Dean 2020 Grand Valley State University

An Investigation Into The Development Of A Low Cost, Easy To Use Seizure Analysis Tool., Cody Dean

Masters Theses

The need for collaborating and sharing data and research between doctors, researchers, universities and patients has never been more necessary. We are seeing firsthand how a deadly virus can completely devastate the world in a matter of months and being able to react quickly is the top priority. Open source tools are making it possible to share research and learnings about viruses like COVID-19 across countries, industries, and universities and these tools and philosophies extend across all areas of medical research.

The amount of data that is being collected within the medical industry is increasing at an exponential rate and …


Digital Commons powered by bepress