Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

650 Full-Text Articles 1,076 Authors 587,127 Downloads 80 Institutions

All Articles in Biomaterials

Faceted Search

650 full-text articles. Page 27 of 30.

Techno-Economic And Fluid Dynamics Analysis For Growing Microalgae With The Intent Of Producing Biofuel Using A System Model, Leah R. Raffaeli 2013 University of Denver

Techno-Economic And Fluid Dynamics Analysis For Growing Microalgae With The Intent Of Producing Biofuel Using A System Model, Leah R. Raffaeli

Electronic Theses and Dissertations

Techno-economic and systems studies on microalgal growth scenarios to date are abbreviated and missing a number of important variables. By including these variables in a detailed model integrating biology, chemistry, engineering, and financial aspects, a more defined systems analysis is possible. Through optimizing the model productivity based on the resulting net profit, the system analysis results in a more accurate assessment of environmental and economic sustainability of specific algal growth scenarios. Photobioreactor algal growth scenario optimization in the system model has resulted in realistic engineering design requirements based on algal growth requirements and fluid dynamics analysis. Results show feasibility for …


Development Of A Multilayered Association Polymer System For Sequential Drug Delivery, Sharath Kumar Chinnakavanam Sundararaj 2013 University of Kentucky

Development Of A Multilayered Association Polymer System For Sequential Drug Delivery, Sharath Kumar Chinnakavanam Sundararaj

Theses and Dissertations--Biomedical Engineering

As all the physiological processes in our body are controlled by multiple biomolecules, comprehensive treatment of certain disease conditions may be more effectively achieved by administration of more than one type of drug. Thus, the primary objective of this research was to develop a multilayered, polymer-based system for sequential delivery of multiple drugs. This particular device was designed aimed at the treatment of periodontitis, a highly prevalent oral inflammatory disease that affects 90% of the world population. This condition is caused by bacterial biofilm on the teeth, resulting in a chronic inflammatory response that leads to loss of alveolar bone …


Growth Plate Regeneration Using Polymer-Based Scaffolds Releasing Growth Factor, Amanda Clark 2013 University of Kentucky

Growth Plate Regeneration Using Polymer-Based Scaffolds Releasing Growth Factor, Amanda Clark

Theses and Dissertations--Biomedical Engineering

Currently growth plate fractures account for nearly 18.5% of fractures in children and can lead to stunted bone growth or angular deformation. If the body is unable to heal itself a bony bar forms, preventing normal bone growth. Clinical treatment involves removing the bony bar and replacing it with a filler substance, which causes poor results 60% of the time.

Using primarily poly(lactic-co-glycolic acid) (PLGA) as the scaffold material, the goal was to develop an implant that would support to the implant site, allow for cell ingrowth, and degrade away over time. Porous scaffolds were fabricated from PLGA microspheres using …


Surface- And Hydrogel-Mediated Delivery Of Nucleic Acid Nanoparticles, Angela K. Pannier, Tatiana Segura 2013 University of Nebraska-Lincoln

Surface- And Hydrogel-Mediated Delivery Of Nucleic Acid Nanoparticles, Angela K. Pannier, Tatiana Segura

Biological Systems Engineering: Papers and Publications

Gene expression within a cell population can be directly altered through gene delivery approaches. Traditionally for nonviral delivery, plasmids or siRNA molecules, encoding or targeting the gene of interest, are packaged within nanoparticles. These nanoparticles are then delivered to the media surrounding cells seeded onto tissue culture plastic; this technique is termed bolus delivery. Although bolus delivery is widely utilized to screen for efficient delivery vehicles and to study gene function in vitro, this delivery strategy may not result in efficient gene transfer for all cell types or may not identify those delivery vehicles that will be efficient in vivo. …


Nanomechanics Of Electrospun Nanofibres For Tissue Engineering Of The Tympanic Membrane, Sara Makaremi 2012 The University of Western Ontario

Nanomechanics Of Electrospun Nanofibres For Tissue Engineering Of The Tympanic Membrane, Sara Makaremi

Electronic Thesis and Dissertation Repository

The Tympanic Membrane (TM), also known as the eardrum, includes layers of organized collagen nanofibres which play an essential role in sound transmission. Perforations that are caused by infection or accident must be repaired in order to restore hearing. Tympanoplasty is performed using grafts that are prepared from bladder, cartilage, temporal fascia and cadaveric skin. However, since mechanical properties of these grafts do not match those of the original TM, normal hearing is not fully restored. The goal of this study is to develop nanofibrous scaffolds for tissue engineering of the TM in order to circumvent the complications addressed with …


Melt Blown Poly(Lactic Acid) For Application As A Tissue Engineering Scaffold, William Horst Gazzola 2012 University of Tennessee, Knoxville

Melt Blown Poly(Lactic Acid) For Application As A Tissue Engineering Scaffold, William Horst Gazzola

Masters Theses

Poly(lactic acid) (PLA) was melt blown (MB) under varying processing conditions to create webs with micro and nano-architecture. Processing parameters varied were primary air flow rate and collector distance. In total, twenty-one webs were produced and the physical properties of the webs were investigated including, mean fiber diameter and fiber diameter distribution, mean pore diameter and pore size distribution, web thickness, degree of crystallinity, tensile modulus and degradation rate. Four webs, two with micro and two with nano-architecture, thought suitable for use as tissue engineering scaffolds were selected for seeding with A375 human malignant melanoma cells. Cell culture was conducted …


Nanoroughened Surfaces For Efficient Capture Of Circulating Tumor Cells Without Using Capture Antibodies, Weiqiang Chen, Shinuo Weng, Feng Zhang, Steven Allen, Xiang Li, Liwei Bao, Raymond H. W. Lam, Jill A. Macoska, Sofia D. Merajver, Jianping Fu 2012 University of Michigan - Ann Arbor

Nanoroughened Surfaces For Efficient Capture Of Circulating Tumor Cells Without Using Capture Antibodies, Weiqiang Chen, Shinuo Weng, Feng Zhang, Steven Allen, Xiang Li, Liwei Bao, Raymond H. W. Lam, Jill A. Macoska, Sofia D. Merajver, Jianping Fu

Weiqiang Chen

Circulating tumor cells (CTCs) detached from both primary and metastatic lesions represent a potential alternative to invasive biopsies as a source of tumor tissue for the detection, characterization and monitoring of cancers. Here we report a simple yet effective strategy for capturing CTCs without using capture antibodies. Our method uniquely utilized the differential adhesion preference of cancer cells to nanorough surfaces when compared to normal blood cells and thus did not depend on their physical size or surface protein expression, a significant advantage as compared to other existing CTC capture techniques.


Calcium Phosphate-Based Resorbable Biomaterials For Bone Regeneration, Daniel O. Costa 2012 The University of Western Ontario

Calcium Phosphate-Based Resorbable Biomaterials For Bone Regeneration, Daniel O. Costa

Electronic Thesis and Dissertation Repository

Bone defects are a prevalent problem in orthopedics and dentistry. Calcium phosphate-based coatings and nanocomposites offer unique solutions towards producing scaffolds with suitable physical, mechanical and biological properties for bone regeneration.

We developed a novel method to synthesize hydroxyapatite (HA) particles with high aspect ratio using sol-gel chemistry and hydrothermal treatment. We obtained tunable pure-phase carbonated-HA in the form of micro/nanorods and nanowires (diameters 25-800 nm). To mimic the structure of bone, HA nanowires were homogenously mixed within poly(ε-caprolactone) (PCL) to produce nanocomposites with improved mechanical properties as determined by uniaxial tensile testing.

Surface chemistry and topography of biomaterials play …


Quaternary Ammonium Silane-Functionalized, Methacrylate Resin Composition With Antimicrobial Activities And Self-Repair Potential, Shi-qiang Gong, Li-na Niu, Lisa K. Kemp, Cynthia K.Y. Yiu, Heonjune Ryou, Yi-pin Qi, John D. Blizzard, Sergey Nikonov, Martha G. Brackett, Regina L.W. Messer, Christine D. Wu, Jing Mao, L. Bryan Brister, Frederick A. Rueggeberg, Dwayne D. Arola, David H. Pashley, Franklin R. Tay 2012 Huazhong University of Science and Technology

Quaternary Ammonium Silane-Functionalized, Methacrylate Resin Composition With Antimicrobial Activities And Self-Repair Potential, Shi-Qiang Gong, Li-Na Niu, Lisa K. Kemp, Cynthia K.Y. Yiu, Heonjune Ryou, Yi-Pin Qi, John D. Blizzard, Sergey Nikonov, Martha G. Brackett, Regina L.W. Messer, Christine D. Wu, Jing Mao, L. Bryan Brister, Frederick A. Rueggeberg, Dwayne D. Arola, David H. Pashley, Franklin R. Tay

Faculty Publications

The design of antimicrobial polymers to address healthcare issues and minimize environmental problems is an important endeavor with both fundamental and practical implications. Quaternary ammonium silane-functionalized methacrylate (QAMS) represents an example of antimicrobial macromonomers synthesized by a sol–gel chemical route; these compounds possess flexible Si–O–Si bonds. In present work, a partially hydrolyzed QAMS co-polymerized with 2,2-[4(2-hydroxy 3-methacryloxypropoxy)-phenyl]propane is introduced. This methacrylate resin was shown to possess desirable mechanical properties with both a high degree of conversion and minimal polymerization shrinkage. The kill-on-contact microbiocidal activities of this resin were demonstrated using single-species biofilms of Streptococcus mutans (ATCC 36558), Actinomyces naeslundii (ATCC …


Poly(Vinyl Alcohol) Nanocomposite Hydrogels For Intervertebral Disc Prostheses, Elaine Wong 2012 The University of Western Ontario

Poly(Vinyl Alcohol) Nanocomposite Hydrogels For Intervertebral Disc Prostheses, Elaine Wong

Electronic Thesis and Dissertation Repository

Spinal fusion is currently the gold standard for surgical intervention of intervertebral disc (IVD) diseases leading to neck and back pain failing conservative treatments. However, fusion removes motion between the vertebrae and can result in adjacent level degeneration. Total disc replacement (TDR) is an emerging treatment alternative that preserves motion, but materials found in clinically available devices bear little resemblance to the properties of the native IVD. Poly(vinyl alcohol) (PVA) hydrogels are biocompatible, have mechanical behaviour similar to natural tissues, and properties that can be tuned by varying polymer concentration and physical crosslinking through freeze-thaw cycling. Furthermore, their properties can …


Modulation Of Bone And Nerve Cell Behavior Using Biodegradable Polymer Networks, Lei Cai 2012 University of Tennessee, Knoxville

Modulation Of Bone And Nerve Cell Behavior Using Biodegradable Polymer Networks, Lei Cai

Doctoral Dissertations

This dissertation presents novel biodegradable and photo-crosslinkable building blocks to achieve polymer networks with controlled surface chemistry, stiffness, and topographical features for investigating cell-material interactions and targeting hard and soft tissue engineering applications. Chapter I reviews the recent progress in polymeric gel systems and how their physical properties can be tailored to regulate cell functions and satisfy the clinical needs. Chapter II presents a facile method to synthesize photo-crosslinkable poly(epsilon-caprolactone) acrylates (PCLAs) and reveal tunable cell responses to photo-crosslinked PCLAs. Chapter III investigates the mechanism of colorization in preparing crosslinkable polymers by reacting hydroxyl-containing polymers with unsaturated anhydrides or acyl …


Effect Of Applied Uniaxial Stress On Rate And Mechanical Effects Of Cross-Linking In Tissue-Derived Biomaterials, Debbie Chachra, Paul Gratzer, Christopher Pereira, J. Lee 2012 Franklin W. Olin College of Engineering

Effect Of Applied Uniaxial Stress On Rate And Mechanical Effects Of Cross-Linking In Tissue-Derived Biomaterials, Debbie Chachra, Paul Gratzer, Christopher Pereira, J. Lee

Debbie Chachra

Conformational changes in collagen fibrils, and indeed the triple helix, can be produced by application of mechanical stress or strain. We have demonstrated that the rate of cross-linking in glutaraldehyde and epoxide homobifunctional reagents can be modulated by uniaxial stress (strain). Two poly(glycidyl ether) epoxides were used: Denacol® EX-810 (a small bifunctional reagent), and Denacol EX-512 (a large polyfunctional reagent). To prevent any possible effect from being masked by saturation of cross-linking sites, bovine pericardium was cross-linked to such an extent that the increase in collagen denaturation temperature, Td, was one-half of the maximal rise achievable with …


Development Of In Vitro Tissue Engineered Blood Vessel Mimics In Complex Geometries For Coronary Stent Testing, Robert Dalton Chavez 2012 California Polytechnic State University, San Luis Obispo

Development Of In Vitro Tissue Engineered Blood Vessel Mimics In Complex Geometries For Coronary Stent Testing, Robert Dalton Chavez

Master's Theses

Coronary heart disease is the leading cause of death in the United States and occurs when plaque occludes coronary arteries. Coronary stents, which may be used to treat coronary occlusions, are small metal tubes that are implanted in coronary arteries to restore blood flow. After stent implantation, endothelial cells grow over the stent so that blood contacts the endothelial cells instead of the stent surface; this event is known as re-endothelialization. Re-endothelialization prevents blood from clotting on the stent surface and is a good predictor of stent success. Blood vessel mimics (BVMs) are in vitro tissue engineered models of human …


Propagation Of Ultrasound Through Freshly Excised Human Calvarium, Armando Garcia Noguera 2012 University of Nebraska – Lincoln

Propagation Of Ultrasound Through Freshly Excised Human Calvarium, Armando Garcia Noguera

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

The propagation of ultrasound through complex biological media, such as the human calvarium, poses a great challenge for modern medicine. Several ultrasonic techniques commonly used for treatment and diagnosis in most of the human body are still difficult to apply to the human brain, in part, because of the properties of the skull. Moreover, an understanding of the biomechanics of transcranial ultrasound may provide needed insight into the problem of blast wave induced traumatic brain injury (TBI). In the present study, the spatial variability of ultrasonic properties was evaluated for relevant frequencies of 0.5, 1, and 2.25 MHz. A total …


Corrosion Of Stainless Steel 316l And Astm F75 Cobalt Chromium Alloy During Immersion Testing In Silver Salt Solutions, Meagan Higgins 2012 California Polytechnic State University - San Luis Obispo

Corrosion Of Stainless Steel 316l And Astm F75 Cobalt Chromium Alloy During Immersion Testing In Silver Salt Solutions, Meagan Higgins

Materials Engineering

This study evaluates the potential effects of silver salts on biocompatible metals used for prostheses during the chemical reduction process to produce a silver antimicrobial layer on the metal’s surface. Samples of two biocompatible metals were obtained: Stainless Steel 316L and ASTM F75 Cobalt Chromium Alloy. Three different silver salts were also acquired: silver nitrate, silver sulfadiazine, and silver chloride. Specimens of each metal were cut to size using a 4-1/2 inch aluminum oxide, 40 grit, cut off wheel for metal, attached to a Dewalt Angle Grinder. The biocompatible metal samples were then subject to either Solution 1, water with …


Design Of Experimentation To Systematically Determine The Interaction Between Electrospinning Variables And To Optimize The Fiber Diameter Of Electrospun Poly (D, L-Lactide-Co-Glycolide) Scaffolds For Tissue Engineered Constructs, Yvette S. Castillo 2012 California Polytechnic State University, San Luis Obispo

Design Of Experimentation To Systematically Determine The Interaction Between Electrospinning Variables And To Optimize The Fiber Diameter Of Electrospun Poly (D, L-Lactide-Co-Glycolide) Scaffolds For Tissue Engineered Constructs, Yvette S. Castillo

Master's Theses

Cardiac disease causes approximately a third of the deaths in the United States. Furthermore, most of these deaths are due to a condition termed atherosclerosis, which is a buildup of plaque in the coronary arteries, leading to occlusion of normal blood flow to the cardiac muscle. Among the methods to treat the condition, stents are devices that are used to restore normal blood flow in the atherosclerotic arteries. Before advancement can be made to these devices and changes can be tested in live models, a reliable testing method that mimics the environment of the native blood vessel is needed. Dr. …


The Characterization Of Biofilm Attachment To Metal Interfaces: Effects Of Substratum Properties, Marcel D. Mendes 2012 California Polytechnic State University, San Luis Obispo

The Characterization Of Biofilm Attachment To Metal Interfaces: Effects Of Substratum Properties, Marcel D. Mendes

Master's Theses

Bacteria are among the most abundant microorganisms on earth, and can be found in essentially every environment. When a clean surface is exposed to media containing planktonic bacteria, the bacterial cells will attach to the surface and aggregate to form what is known as a biofilm. Biofilms have been shown to negatively affect many industries including medical, industrial, and food science applications. While biofilms have been well characterized from a microbiology perspective, there has been much less research from a materials science standpoint. It is hypothesized that the material properties of the substratum (such as the micro-structure) have a significant …


Growth And Expression Of Halorhodopsin For Application In A Protein-Based Artificial Retina, Megan Ryan Gillespie 2012 University of Connecticut - Storrs

Growth And Expression Of Halorhodopsin For Application In A Protein-Based Artificial Retina, Megan Ryan Gillespie

Honors Scholar Theses

Halorhodopsin (HR), a light-activated chloride ion pump, demonstrates potential for use as the scaffolding in an artificial retina. Retinal implants are needed to restore vision to people afflicted with ophthalmic diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). A protein-based chloride ion-patch would be utilized by the eye to create an influx of chloride ions, similar to ion concentrations in healthy retinas during the conversion of light stimuli to electrochemical signals. This protein-based retinal prosthesis will directly stimulate the bipolar cells of the retina, replacing the function of damaged photoreceptor cells. Other alternative treatments for AMD and …


Stability Of A Microvessel Subject To Structural Adaptation Of Diameter And Wall Thickness, Alisha Sarang-Sieminski, John Geddes, Ilari Shafer, Rachel Nancollas, Morgan Boes 2012 Franklin W. Olin College of Engineering

Stability Of A Microvessel Subject To Structural Adaptation Of Diameter And Wall Thickness, Alisha Sarang-Sieminski, John Geddes, Ilari Shafer, Rachel Nancollas, Morgan Boes

John B. Geddes

Vascular adaptation—or structural changes of microvessels in response to physical and metabolic stresses—can influence physiological processes like angiogenesis and hypertension. To better understand the influence of these stresses on adaptation, Pries et al. (1998, 2001a,b, 2005) have developed a computational model for microvascular adaptation. Here, we reformulate this model in a way that is conducive to a dynamical systems analysis. Using th ese analytic methods, we determine the equilibrium geometries of a single vessel under different conditions and classify its type of stability. We demonstrate that our closed-form solution for vessel geometry exhibits the same regions of stability as the …


Engineering Strategies To Recapitulate Epithelial Morphogenesis Within Synthetic Three-Dimensional Extracellular Matrix With Tunable Mechanical Properties, Alisha Sarang-Sieminski, Yekaterina Miroshnikova, D Jorgens, L Spirio, M Auer, V Weaver 2012 Franklin W. Olin College of Engineering

Engineering Strategies To Recapitulate Epithelial Morphogenesis Within Synthetic Three-Dimensional Extracellular Matrix With Tunable Mechanical Properties, Alisha Sarang-Sieminski, Yekaterina Miroshnikova, D Jorgens, L Spirio, M Auer, V Weaver

Alisha L. Sarang-Sieminski

The mechanical properties (e.g. stiffness) of the extracellular matrix (ECM) influence cell fate and tissue morphogenesis and contribute to disease progression. Nevertheless, our understanding of the mechanisms by which ECM rigidity modulates cell behavior and fate remains rudimentary. To address this issue, a number of two and three-dimensional (3D) hydrogel systems have been used to explore the effects of the mechanical properties of the ECM on cell behavior. Unfortunately, many of these systems have limited application because fiber architecture, adhesiveness and/or pore size often change in parallel when gel elasticity is varied. Here we describe the use of ECM-adsorbed, synthetic, …


Digital Commons powered by bepress