Open Access. Powered by Scholars. Published by Universities.®

Propulsion and Power Commons

Open Access. Powered by Scholars. Published by Universities.®

667 Full-Text Articles 842 Authors 483,702 Downloads 47 Institutions

All Articles in Propulsion and Power

Faceted Search

667 full-text articles. Page 1 of 24.

Experimental Analysis Of The Integrated High-Lift Propulsor, Robert W. Deters, Byron Ward, Shreyas Narsipur 2024 Embry-Riddle Aeronautical University

Experimental Analysis Of The Integrated High-Lift Propulsor, Robert W. Deters, Byron Ward, Shreyas Narsipur

Publications

Wind tunnel testing was conducted to evaluate the performance of the Integrated High Lift Propulsor (IHLP), a novel Distributed Electric Propulsion (DEP) system. The IHLP integrates traditional Krueger flap/slat elements with a Distributed Electric Propulsion design, enhancing high lift performance and cruise efficiency compared to conventional pylon-mounted DEP configurations. Starting from a baseline configuration determined from pretest Computational Fluid Dynamics (CFD) analyses, a parametric study was performed to determine the influence on the aerodynamic characteristics (𝐶𝑙 , 𝐶𝑥, and 𝐶𝑚). The study involved variations in flap settings, slat angles, overlap, propeller tilt, and propeller position. The impact of Reynolds number, …


Comparative Evaluation Of Propulsive Power Transmission Technologies For High-Speed Vertical Takeoff And Landing (Hsvtol) Cargo Aircraft, Xinyu Yang 2023 Embry-Riddle Aeronautical University

Comparative Evaluation Of Propulsive Power Transmission Technologies For High-Speed Vertical Takeoff And Landing (Hsvtol) Cargo Aircraft, Xinyu Yang

Doctoral Dissertations and Master's Theses

Designing High-Speed Vertical Takeoff and Landing (HSVTOL) cargo aircraft capable of both low downwash velocity hovering and high subsonic speed cruising presents a significant engineering challenge. This challenge, stemming from conflicting design requirements, has been substantially influenced by recent technological advancements, which have offered greater flexibility in rotor placement. Consequently, this has led to the emergence of innovative mission-specific designs that hold the potential to outperform traditional concepts. The central objective of this study is to evaluate the benefits of modern technologies for VTOL cargo aircraft and assess their performance relative to baseline VTOL aircraft. The results of this comparative …


Analysis Of An Electrospray Thruster With A Concave Propellant Meniscus, Adam Nicholas Huller 2023 University of Tennessee, Knoxville

Analysis Of An Electrospray Thruster With A Concave Propellant Meniscus, Adam Nicholas Huller

Masters Theses

The low thrust, high specific impulse, and low mass of electrospray thrusters (ETs) make them ideal for maneuvering nanosatellites, especially with the new requirement to deorbit a satellite within five years of completing its mission. These innovative thrusters use electrohydrodynamic principles of electrospray (ES) to provide thrust. These principles have been subject to much research over the past decade, though much more research is needed to fully understand the underlying physics of these thrusters. The first part of this study establishes a procedure for analyzing the theoretical thrust performance of an ET, by using propellant properties and well-documented ES scaling …


Testing And Implementation Of Attitude Determination & Control System For Arksat-1 Cubesatellite, Cassandra Sands 2023 University of Arkansas-Fayetteville

Testing And Implementation Of Attitude Determination & Control System For Arksat-1 Cubesatellite, Cassandra Sands

Graduate Theses and Dissertations

ARKSAT-1 is a CubeSatellite (CubeSat) developed at the University of Arkansas and launched to the International Space Station on SpaceX mission SPX-27 launching from Kennedy Space Center as part of the NASA’s 8th CubeSat Launch Initiative CSLI-8. ARKSAT-1’s payload features a high-powered LED, the Solid State Inflatable Balloon (SSIB) deorbiting system applicable to small satellites, and a series of InfraRed and Visible cameras. To point the LED or take images of desired observational targets, the spacecraft will need to be able to determine its orientation within its orbit, as well as rotate. This will be achieved through the use of …


Kwad - Ksu All Weather Autonomous Drone, Nick Farinacci, Sebastian Gomez, Stewart Baker, Ed Sheridan 2023 Kennesaw State University

Kwad - Ksu All Weather Autonomous Drone, Nick Farinacci, Sebastian Gomez, Stewart Baker, Ed Sheridan

Symposium of Student Scholars

"KWAD" or "KSU all-Weather Autonomous Drone" project was sponsored by Ultool, LLC to the KSU Research and Service Foundation to create a lightweight drone capable of capturing HD video during all-weather operations. The conditions of all-weather operation include rainfall of one inch per hour and wind speeds of up to twenty miles per hour. In addition, a global minimum structural safety factor of two is required to ensure the system's integrity in extreme weather conditions. Potential mission profiles include autonomous aerial delivery, topological mapping in high moisture areas, security surveillance, search and rescue operations, emergency transportation of medical supplies, and …


Performance And Emissions Study Of N+3 And N+4 Engine Models With Several Fuel Types Using Npss, Abel Solomon 2023 Washington University in St. Louis

Performance And Emissions Study Of N+3 And N+4 Engine Models With Several Fuel Types Using Npss, Abel Solomon

McKelvey School of Engineering Theses & Dissertations

The aviation industry is known to be one of the major contributors to greenhouse gases accounting for 4.9% of the global greenhouse emissions. With the ever-increasing threat of climate change to the overall survival of the planet, the exploration of new technologies and alternative energy sources that minimize greenhouse gas emissions are of paramount importance. In this regard, the development of propulsion systems well suited for the performance and emissions requirements of future commercial aircraft plays a crucial role. This thesis investigates N+3 and N+4 technology-level propulsion systems that are proposed by NASA as possible propulsion systems for advanced single-aisle …


Design And Implementation Of A Launching Method For Free To Oscillate Dynamic Stability Testing, Kristen M. Carey 2023 Old Dominion University

Design And Implementation Of A Launching Method For Free To Oscillate Dynamic Stability Testing, Kristen M. Carey

Mechanical & Aerospace Engineering Theses & Dissertations

Magnetic Suspension and Balance Systems (MSBS) allow for static, forced oscillation and free to oscillate dynamic stability testing in a wind tunnel without the need for a physical support. The objectives of study are to assist in the application of the free to oscillate testing method in an MSBS to determine dynamic stability characteristics for various re-entry capsule designs.

This thesis discusses the development and testing of a launching method called the grabber for use in the MSBS Subsonic Wind Tunnel at NASA Langley Research Center. Aerodynamic tests were run to support the use of this method and compare the …


Performance Evaluation And Thermal Management Solutions For A Sustainable Microsized Hydrogen-Powered Turbo-Shaft Engine, Nikolai Baranov 2023 Purdue University

Performance Evaluation And Thermal Management Solutions For A Sustainable Microsized Hydrogen-Powered Turbo-Shaft Engine, Nikolai Baranov

Discovery Undergraduate Interdisciplinary Research Internship

Analyzing the aerospace and automotive industries, there is a transition to sustainable energy generation. Aiming to bridge industrial emissions with the worldwide net zero goal by 2050, one widely considered solution for long-range drones and small aircraft is compact turbo-shaft engines combusting clean hydrogen gas to produce shaft work. The small size and energy-dense fuel allow for a universal powerplant with high specific power output that fits a wide variety of existing solutions. One such micro-sized turboshaft internal combustion engine was created to test the potential power output, thermal management, and combustor optimization of the existing stainless steel assembly. The …


The Influence Of Mixing Duct Length And Phase Of Flight On Wall Temperatures Of A Rocket Based Combined Cycle Engine In Ejector And Air-Augmented Modes, Jonathan Grow 2023 Embry-Riddle Aeronautical University

The Influence Of Mixing Duct Length And Phase Of Flight On Wall Temperatures Of A Rocket Based Combined Cycle Engine In Ejector And Air-Augmented Modes, Jonathan Grow

Doctoral Dissertations and Master's Theses

Rocket Based Combined Cycle (RBCC) engines have been theorized as a possible means of powering launch vehicles and high-speed atmospheric vehicles. By incorporating aspects of both air-breathing and rocket propulsion, RBCC engines promise up to a 230 % increase in specific impulse over traditional chemical rocket propulsion by entraining a secondary flow of atmospheric air and mixing it with the exhaust of a rocket motor. Students within the Embry-Riddle Future Space Explorers and Developers Society (ERFSEDS) identified a
problem of excessive heating and structural failure of the mixing duct during launch and transonic flight of a student-built flight test vehicle. …


Crazyflie 2.1 Quadcopter Nonlinear System Identification, Nhat V. Nguyen, Hope Storro, John Plimpton 2023 Eastern Washington University

Crazyflie 2.1 Quadcopter Nonlinear System Identification, Nhat V. Nguyen, Hope Storro, John Plimpton

2023 Symposium

Quadcopters (quad) are used widely in many industries with crucial applications such as infrastructure inspection or package delivery. The Crazyflie 2.1 quad from Bitcraze provides an excellent platform for research and development. In this project, our goal is to perform system identification on the Crazyflie to propose a complete model. A gray box method is explored, which includes leveraging the parameters that are already known, to develop a set of equations. Through theory, simulations, and measurements, a complete quadcopter model is developed.


Cooled Liquid Rocket Thrust Chamber, Benjamin Gibson, Kealan Frederick Harris, Ryan Frank Schackel, Bjorn Thorsen 2023 California Polytechnic State University, San Luis Obispo

Cooled Liquid Rocket Thrust Chamber, Benjamin Gibson, Kealan Frederick Harris, Ryan Frank Schackel, Bjorn Thorsen

Mechanical Engineering

Cooling may affect the thrust output of a small-scale rocket. Little research is published about small-scale rocket performance. We hypothesize the thrust produced varies as the amount of cooling varies. To facilitate assessing this hypothesis, we have designed and built a liquid rocket engine rated for at approximately 25 lbf of thrust. Our objective was to build in parallel with Cal Poly Space Systems, who built a rocket engine with similar specifications except without cooling. Our challenge is to integrate film cooling, so that the effects of cooling may be compared to Cal Poly Space System’s engine which has …


Feasibility Assessment Of An All-Electric, Narrow-Body Airliner, Ariel Sampson 2023 California Polytechnic State University, San Luis Obispo

Feasibility Assessment Of An All-Electric, Narrow-Body Airliner, Ariel Sampson

Master's Theses

Combustion emissions from aviation operations contribute significantly to climate change and air pollution. Accordingly, there is increasing interest in advancing battery-powered propulsion for aviation applications to reduce emissions. As batteries continue to improve, it is essential to recognize breakthroughs in battery specific energy in the context of air transport vehicles. Most electric aircraft designs and programs have focused on small aircraft because of restrictive battery performance. This work presents a feasibility assessment for an all-electric airliner based on an Airbus A220-100 with turbofan engines replaced by electric motors and propellers. The analysis compares the performance characteristics of the electric airliner …


Simulating Dielectric Barrier Plasma Actuators With Varying Geometries, Cass Wiederkehr 2023 University of Arkansas, Fayetteville

Simulating Dielectric Barrier Plasma Actuators With Varying Geometries, Cass Wiederkehr

Mechanical Engineering Undergraduate Honors Theses

The idea of Ionic Wind Propulsion has long been a topic of research for whether or not it can be used as a practical power source for flight. MIT researchers proved in 2018 that a plane with zero moving parts powered by Ionic Wind Propulsion was possible, and sustained flight could work with an internal power supply. However, due to the thin wire electrodes required to generate the ion cloud that made such propulsion possible, large amounts of drag rendered the plane extremely inefficient and impractical. Dielectric Barrier Discharge Devices (DBDs) are being investigated as to whether they can serve …


Enabling Premixed Hydrogen-Air Combustion For Aeroengines Via Laboratory Experiment Modeling, Christopher James Caulfield 2023 University of Tennessee Space Institute

Enabling Premixed Hydrogen-Air Combustion For Aeroengines Via Laboratory Experiment Modeling, Christopher James Caulfield

Masters Theses

All combustion systems from large scale power plants to the engines of cars to gas turbines in aircraft are looking for new fuel sources. Recently, clean energy for aviation has come into the foreground as an important issue due to the environment impacts of current combustion methods and fuels used. The aircraft industry is looking towards hydrogen as a new, powerful, and clean fuel of the future. However there are several engineering and scientific challenges to overcome before hydrogen can be deployed into the industry. These issues
range from storing the hydrogen in a viable cryogenic form for an aircraft …


Design And Implementation Of High-Efficiency, Lightweight, System-Friendly Solid-State Circuit Breaker, Dehao Qin 2023 Clemson University

Design And Implementation Of High-Efficiency, Lightweight, System-Friendly Solid-State Circuit Breaker, Dehao Qin

All Dissertations

Direct current (DC) distribution system has shown potential over the alternative current (AC) distribution system in some application scenarios, e.g., electrified transportation, renewable energy, data center, etc. Because of the fast response speed, DC solid-state circuit breaker (SSCB) becomes a promising technology for the future power electronics intensive DC energy system with fault-tolerant capability. First, a thorough literature survey is performed to review the DC-SSCB technology. The key components for DC-SSCB, including power semiconductors, topologies, energy absorption units, and fault detection circuits, are studied. It is observed that the prior studies mainly focus on the basic interruption capability of the …


Superfly Amphibian, Devonte Andrews, Ahmed Hamza, Kwesi Onumah, Eva Sanchez 2023 Kennesaw State University

Superfly Amphibian, Devonte Andrews, Ahmed Hamza, Kwesi Onumah, Eva Sanchez

Senior Design Project For Engineers

Following a Short Takeoff and Landing (STOL) mission profile, this seaplane is designed to carry 19 passengers and 1 flight crew with a range of 200 nautical miles. The seaplane is equipped with two turbo-prop engines and is economically comparable to current seaplanes in terms of servicing and operating expenses. The aircraft is capable of operating in remote locations with limited infrastructure due to its STOL abilities, allowing for increased access to difficult-to-reach areas. The seaplane's design incorporates modern materials and technologies to enhance efficiency, safety, and comfort for passengers and crew. The aircraft's versatility and cost-effectiveness make it an …


Comparisons Of Cooling Performance And Flow Characteristics Of A Combustor Liner Plate With Compound Angle And Simple Angle Effusion Holes, Hwabhin Kwon, Phillip M. Ligrani, Sneha R. Vanga, Heesung Park 2023 Changwon National University

Comparisons Of Cooling Performance And Flow Characteristics Of A Combustor Liner Plate With Compound Angle And Simple Angle Effusion Holes, Hwabhin Kwon, Phillip M. Ligrani, Sneha R. Vanga, Heesung Park

PRC-Affiliated Research

The present investigation considers a unique compound angle arrangement, never previously considered, with α = 30°, β = ±30°, such that the compound angle of the effusion holes changes from β = +30° to β = −30°, as adjacent rows of effusion holes are encountered. Also provided are data for comparison from a simple angle configuration with α = 30°, β = 0°. Coolant is supplied to both effusion hole arrays using arrays of impingement cooling jets. The results of the numerical simulations are obtained using the ANSYS FLUENT V 21.1 numerical code, with a shear stress transport (SST) k–ω …


Computer Based Modeling For Tilt-Wing E-Vtol Propeller Performance, Ege Konuk, Drew Landman 2023 Old Dominion University

Computer Based Modeling For Tilt-Wing E-Vtol Propeller Performance, Ege Konuk, Drew Landman

College of Engineering & Technology (Batten) Posters

Recent decades have seen a rapid popularization of Urban Air Mobility (UAM) concepts. The new generation of designs presents a wide range of configurations and approaches to exploit the advantages of these vehicles that can be used in civil, commercial, and military applications. One of the more popular concepts is the tandem tilt-wing e-VTOL configuration. However, these types of VTOL configurations bring challenges for performance prediction during crucial parts of flight operations. The flight dynamics during transition regimes where the vehicle transitions from vertical to forward flight and vice versa is not fully understood. In this research, modified blade element …


Development Of A Regeneratively Cooled Liquid Rocket Engine, Dillon Petty, Nicole Zimmerli 2023 The University of Akron

Development Of A Regeneratively Cooled Liquid Rocket Engine, Dillon Petty, Nicole Zimmerli

Williams Honors College, Honors Research Projects

An additively manufactured (AM) liquid rocket engine, consisting of an injector, combustion chamber, and nozzle, was designed and printed using state-of-the-art methods and materials. The parts were manufactured using laser powder bed fusion. Additive manufacturing allowed for complex geometries and features, such as printing manifolds onto the components with a reduced number of parts. Additive, regenerative cooling channels were designed into the chamber and nozzle to allow for long-duration steady-state operation.

The feed system for the engine was designed and built to allow for pressure-regulated and steady-state testing. Tanks for the fuel and oxidizer were designed and built for a …


Solar Sailing Adaptive Control Using Integral Concurrent Learning For Solar Flux Estimation, Luis Enrique Mendoza Zambrano, Riccardo Bevilacqua 2023 Embry-Riddle Aeronautical University

Solar Sailing Adaptive Control Using Integral Concurrent Learning For Solar Flux Estimation, Luis Enrique Mendoza Zambrano, Riccardo Bevilacqua

Student Works

In the interest of exploiting natural forces for propellant-less spacecraft missions, this investigation proposes an adaptive control strategy to account for unknown parameters in the dynamic modeling of a reflectivity-controlled solar sail spacecraft. A Lyapunov-based control law along with integral concurrent learning is suggested to accomplish and prove global exponential tracking of the estimated parameters and states of interest, without satisfying the common persistence of excitation condition, which in most nonlinear systems cannot be guaranteed a priori. This involves estimating the solar flux or irradiance from the Sun to account for uncertainty and variation over time in this value. To …


Digital Commons powered by bepress