Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

975 Full-Text Articles 1,278 Authors 402,570 Downloads 63 Institutions

All Articles in Navigation, Guidance, Control and Dynamics

Faceted Search

975 full-text articles. Page 1 of 43.

Cubesat Reaction Wheel Attitude Control Platform System Architecture, Justin Hartland 2024 Embry-Riddle Aeronautical University

Cubesat Reaction Wheel Attitude Control Platform System Architecture, Justin Hartland

Beyond: Undergraduate Research Journal

In the classroom, physics behind spacecraft attitude dynamics and controls is abstract and difficult to comprehend. It is common that students struggle to develop the connection between the math they learn and how it can be applied in the real world. The goal of this project is to design and manufacture a 1U, 3U, and 6U CubeSat testbed for autonomous control systems utilizing reaction wheels. The testbed will include three separate reaction wheels each mounted on its own respective axis to control the attitude in 3 degrees of freedom. The end goal of the CubeSat Control Platform is to be …


Immersive Framework For Designing Trajectories Using Augmented Reality, Joseph Anderson, Leo Materne, Karis Cooks, Michelle Aros, Jaia Huggins, Jesika Geliga-Torres, Kamden Kuykendall, David Canales, Barbara Chaparro 2024 Embry-Riddle Aeronautical University

Immersive Framework For Designing Trajectories Using Augmented Reality, Joseph Anderson, Leo Materne, Karis Cooks, Michelle Aros, Jaia Huggins, Jesika Geliga-Torres, Kamden Kuykendall, David Canales, Barbara Chaparro

Publications

The intuitive interaction capabilities of augmented reality make it ideal for solving complex 3D problems that require complex spatial representations, which is key for astrodynamics and space mission planning. By implementing common and complex orbital mechanics algorithms in augmented reality, a hands-on method for designing orbit solutions and spacecraft missions is created. This effort explores the aforementioned implementation with the Microsoft Hololens 2 as well as its applications in industry and academia. Furthermore, a human-centered design process and study are utilized to ensure the tool is user-friendly while maintaining accuracy and applicability to higher-fidelity problems.


Gnss Software Defined Radio: History, Current Developments, And Standardization Efforts, Thomas Pany, Dennis Akos, Javier Arribas, M. Zahidul H. Bhuiyan, Pau Closas, Fabio Dovis, Ignacio Fernandez-Hernandez, Carles Fernandez-Prades, Sanjeev Gunawardena, Todd Humphreys, Zaher M. Kassas, Jose A. Lopez Salcedo, Mario Nicola, Mario L. Psiaki, Alexander Rugamer, Yong-Jin Song, Jong-Hoon Won 2024 Universitat der Bundeswehr Munchen

Gnss Software Defined Radio: History, Current Developments, And Standardization Efforts, Thomas Pany, Dennis Akos, Javier Arribas, M. Zahidul H. Bhuiyan, Pau Closas, Fabio Dovis, Ignacio Fernandez-Hernandez, Carles Fernandez-Prades, Sanjeev Gunawardena, Todd Humphreys, Zaher M. Kassas, Jose A. Lopez Salcedo, Mario Nicola, Mario L. Psiaki, Alexander Rugamer, Yong-Jin Song, Jong-Hoon Won

Faculty Publications

Taking the work conducted by the global navigation satellite system (GNSS) software-defined radio (SDR) working group during the last decade as a seed, this contribution summarizes, for the first time, the history of GNSS SDR development. This report highlights selected SDR implementations and achievements that are available to the public or that influenced the general development of SDR. Aspects related to the standardization process of intermediate-frequency sample data and metadata are discussed, and an update of the Institute of Navigation SDR Standard is proposed. This work focuses on GNSS SDR implementations in general-purpose processors and leaves aside developments conducted on …


Artificial Intelligence-Assisted Inertial Geomagnetic Passive Navigation, Andrei Cuenca 2023 Embry-Riddle Aeronautical University

Artificial Intelligence-Assisted Inertial Geomagnetic Passive Navigation, Andrei Cuenca

Doctoral Dissertations and Master's Theses

In recent years, the integration of machine learning techniques into navigation systems has garnered significant interest due to their potential to improve estimation accuracy and system robustness. This doctoral dissertation investigates the use of Deep Learning combined with a Rao-Blackwellized Particle Filter for enhancing geomagnetic navigation in airborne simulated missions.

A simulation framework is developed to facilitate the evaluation of the proposed navigation system. This framework includes a detailed aircraft model, a mathematical representation of the Earth's magnetic field, and the incorporation of real-world magnetic field data obtained from online databases. The setup allows an accurate assessment of the performance …


Verification And Validation Of Robot Manipulator Adaptive Control With Actuator Deficiency, Sebastian Comeaux 2023 Embry-Riddle Aeronautical University

Verification And Validation Of Robot Manipulator Adaptive Control With Actuator Deficiency, Sebastian Comeaux

Doctoral Dissertations and Master's Theses

This work addresses the joint tracking problem of robotic manipulators with uncertain dynamical parameters and actuator deficiencies, in the form of an uncertain control effectiveness matrix, through adaptive control design, simulation, and experimentation. Specifically, two novel adaptive controller formulations are implemented and tested via simulation and experimentation. The proposed adaptive control formulations are designed to compensate for uncertainties in the dynamical system parameters as well as uncertainties in the control effectiveness matrix that pre-multiplies the control input. The uncertainty compensation of the dynamical parameters is achieved via the use of the desired model compensation–based adaptation, while the uncertainties related to …


Deep-Learning Based Multiple-Model Bayesian Architecture For Spacecraft Fault Estimation, Rocio Jado Puente 2023 Embry-Riddle Aeronautical University

Deep-Learning Based Multiple-Model Bayesian Architecture For Spacecraft Fault Estimation, Rocio Jado Puente

Doctoral Dissertations and Master's Theses

This thesis presents recent findings regarding the performance of an intelligent architecture designed for spacecraft fault estimation. The approach incorporates a collection of systematically organized autoencoders within a Bayesian framework, enabling early detection and classification of various spacecraft faults such as reaction-wheel damage, sensor faults, and power system degradation.

To assess the effectiveness of this architecture, a range of performance metrics is employed. Through extensive numerical simulations and in-lab experimental testing utilizing a dedicated spacecraft testbed, the capabilities and accuracy of the proposed intelligent architecture are analyzed. These evaluations provide valuable insights into the architecture's ability to detect and classify …


Development Of A Constellation Simulator For A 5g/Iot Mission Planning System, Franco Criscola 2023 Embry-Riddle Aeronautical University

Development Of A Constellation Simulator For A 5g/Iot Mission Planning System, Franco Criscola

Doctoral Dissertations and Master's Theses

The advancement of 5G and Internet-of-Things technologies has presented new challenges for telecommunications providers. One of the challenges is integrating these technologies with present networks. A solution has been found in low-Earth orbit satellite constellations. On one hand, this method increases coverage and reduces costs, but on the other it raises new problems like how to efficiently manage large constellations of spacecraft. This thesis introduces the Constellation Management System, developed in collaboration with i2Cat foundation. This novel tool is composed of two modules: the simulator and the scheduler. The former propagates satellite motion and computes visibility events to various targets …


The Afit Engineer, Volume 5, Issue 4, Graduate School of Engineering and Management, Air Force Institute of Technology 2023 Air Force Institute of Technology

The Afit Engineer, Volume 5, Issue 4, Graduate School Of Engineering And Management, Air Force Institute Of Technology

AFIT Documents

This issue has a special research feature section by the Autonomy and Navigation Technology Center (ANT) on Demonstration of Alternative Navigation Technologies for Autonomous Aircraft.

Also in this issue:

  • ANT Center lowers DOD dependence on GPS
  • Record number of female Doctorates awarded at AFIT's Fall Commencement
  • D'Azzo Research Library recognized by Library of Congress.
  • Hypersonic vehicle flying qualities assessment
  • Retirement of Dean Badiru

.... and more.


Safe Navigation Of Quadruped Robots Using Density Functions, Andrew Zheng 2023 Clemson University

Safe Navigation Of Quadruped Robots Using Density Functions, Andrew Zheng

All Theses

Safe navigation of mission-critical systems is of utmost importance in many modern autonomous applications. Over the past decades, the approach to the problem has consisted of using probabilistic methods, such as sample-based planners, to generate feasible, safe solutions to the navigation problem. However, these methods use iterative safety checks to guarantee the safety of the system, which can become quite complex. The navigation problem can also be solved in feedback form using potential field methods. Navigation function, a class of potential field methods, is an analytical control design to give almost everywhere convergence properties, but under certain topological constraints and …


Testing And Implementation Of Attitude Determination & Control System For Arksat-1 Cubesatellite, Cassandra Sands 2023 University of Arkansas-Fayetteville

Testing And Implementation Of Attitude Determination & Control System For Arksat-1 Cubesatellite, Cassandra Sands

Graduate Theses and Dissertations

ARKSAT-1 is a CubeSatellite (CubeSat) developed at the University of Arkansas and launched to the International Space Station on SpaceX mission SPX-27 launching from Kennedy Space Center as part of the NASA’s 8th CubeSat Launch Initiative CSLI-8. ARKSAT-1’s payload features a high-powered LED, the Solid State Inflatable Balloon (SSIB) deorbiting system applicable to small satellites, and a series of InfraRed and Visible cameras. To point the LED or take images of desired observational targets, the spacecraft will need to be able to determine its orientation within its orbit, as well as rotate. This will be achieved through the use of …


Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt 2023 Clemson University

Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt

All Dissertations

Remotely actuated microscale swimming robots have the potential to revolutionize many aspects of biomedicine. However, for the longterm goals of this field of research to be achievable, it is necessary to develop modelling, simulation, and control strategies which effectively and efficiently account for not only the motion of individual swimmers, but also the complex interactions of such swimmers with their environment including other nearby swimmers, boundaries, other cargo and passive particles, and the fluid medium itself. The aim of this thesis is to study these problems in simulation from the perspective of controls and dynamical systems, with a particular focus …


Kwad - Ksu All Weather Autonomous Drone, Nick Farinacci, Sebastian Gomez, Stewart Baker, Ed Sheridan 2023 Kennesaw State University

Kwad - Ksu All Weather Autonomous Drone, Nick Farinacci, Sebastian Gomez, Stewart Baker, Ed Sheridan

Symposium of Student Scholars

"KWAD" or "KSU all-Weather Autonomous Drone" project was sponsored by Ultool, LLC to the KSU Research and Service Foundation to create a lightweight drone capable of capturing HD video during all-weather operations. The conditions of all-weather operation include rainfall of one inch per hour and wind speeds of up to twenty miles per hour. In addition, a global minimum structural safety factor of two is required to ensure the system's integrity in extreme weather conditions. Potential mission profiles include autonomous aerial delivery, topological mapping in high moisture areas, security surveillance, search and rescue operations, emergency transportation of medical supplies, and …


Six-Degree-Of-Freedom Optimal Feedback Control Of Pinpoint Landing Using Deep Neural Networks, Omkar S. Mulekar, Hancheol Cho, Riccardo Bevilacqua 2023 University of Florida

Six-Degree-Of-Freedom Optimal Feedback Control Of Pinpoint Landing Using Deep Neural Networks, Omkar S. Mulekar, Hancheol Cho, Riccardo Bevilacqua

Student Works

Machine learning regression techniques have shown success at feedback control to perform near-optimal pinpoint landings for low fidelity formulations (e.g. 3 degree-of-freedom). Trajectories from these low-fidelity landing formulations have been used in imitation learning techniques to train deep neural network policies to replicate these optimal landings in closed loop. This study details the development of a near-optimal, neural network feedback controller for a 6 degree-of-freedom pinpoint landing system. To model disturbances, the problem is cast as either a multi-phase optimal control problem or a triple single-phase optimal control problem to generate examples of optimal control through the presence of disturbances. …


Exploring Underwater Noise Issues: A Study Of Decentralized Approach, Takanori Uzumaki 2023 World Maritime University

Exploring Underwater Noise Issues: A Study Of Decentralized Approach, Takanori Uzumaki

World Maritime University Dissertations

No abstract provided.


Stability Of Deep Neural Networks For Feedback-Optimal Pinpoint Landings, Omkar S. Mulekar, Hancheol Cho, Riccardo Bevilacqua 2023 University of Florida

Stability Of Deep Neural Networks For Feedback-Optimal Pinpoint Landings, Omkar S. Mulekar, Hancheol Cho, Riccardo Bevilacqua

Student Works

The ability to certify systems driven by neural networks is crucial for future rollouts of machine learning technologies in aerospace applications. In this study, the neural networks are used to represent a fuel-optimal feedback controller for two different 3-degree-of-freedom pinpoint landing problems. It is shown that the standard sum-ofsquares Lyapunov candidate is too restrictive to assess the stability of systems with fuel-optimal control profiles. Instead, a parametric Lyapunov candidate (i.e. a neural network) can be trained to sufficiently evaluate the closed-loop stability of fuel-optimal control profiles. Then, a stability-constrained imitation learning method is applied, which simultaneously trains a neural network …


Hardware-In-The-Loop Reaction Wheel Testbed With Camera Vision, Abigail Romero, Harvey Perkins, Stephen Kwok-Choon 2023 California Polytechnic State University, San Luis Obispo

Hardware-In-The-Loop Reaction Wheel Testbed With Camera Vision, Abigail Romero, Harvey Perkins, Stephen Kwok-Choon

College of Engineering Summer Undergraduate Research Program

Reaction wheels are widely used in aerospace systems as a method of attitude control. This research was focused on the design, development, and testing of a hardware-in-the-loop reaction wheel testbed that can be used for research and teaching applications related to satellite navigation and control. This project successfully utilized commercial off-the-shelf components to develop a reaction wheel capable of controlling the orientation of a freely rotating platform, as well as tracking objects using computer vision.


Rigid Body Constrained Motion Optimization And Control On Lie Groups And Their Tangent Bundles, Brennan S. McCann 2023 Embry-Riddle Aeronautical University

Rigid Body Constrained Motion Optimization And Control On Lie Groups And Their Tangent Bundles, Brennan S. Mccann

Doctoral Dissertations and Master's Theses

Rigid body motion requires formulations where rotational and translational motion are accounted for appropriately. Two Lie groups, the special orthogonal group SO(3) and the space of quaternions H, are commonly used to represent attitude. When considering rigid body pose, that is spacecraft position and attitude, the special Euclidean group SE(3) and the space of dual quaternions DH are frequently utilized. All these groups are Lie groups and Riemannian manifolds, and these identifications have profound implications for dynamics and controls. The trajectory optimization and optimal control problem on Riemannian manifolds presents significant opportunities for theoretical development. Riemannian optimization is an attractive …


Online Aircraft System Identification Using A Novel Parameter Informed Reinforcement Learning Method, Nathan Schaff 2023 Embry-Riddle Aeronautical University

Online Aircraft System Identification Using A Novel Parameter Informed Reinforcement Learning Method, Nathan Schaff

Doctoral Dissertations and Master's Theses

This thesis presents the development and analysis of a novel method for training reinforcement learning neural networks for online aircraft system identification of multiple similar linear systems, such as all fixed wing aircraft. This approach, termed Parameter Informed Reinforcement Learning (PIRL), dictates that reinforcement learning neural networks should be trained using input and output trajectory/history data as is convention; however, the PIRL method also includes any known and relevant aircraft parameters, such as airspeed, altitude, center of gravity location and/or others. Through this, the PIRL Agent is better suited to identify novel/test-set aircraft.

First, the PIRL method is applied to …


Design And Implementation Of A Launching Method For Free To Oscillate Dynamic Stability Testing, Kristen M. Carey 2023 Old Dominion University

Design And Implementation Of A Launching Method For Free To Oscillate Dynamic Stability Testing, Kristen M. Carey

Mechanical & Aerospace Engineering Theses & Dissertations

Magnetic Suspension and Balance Systems (MSBS) allow for static, forced oscillation and free to oscillate dynamic stability testing in a wind tunnel without the need for a physical support. The objectives of study are to assist in the application of the free to oscillate testing method in an MSBS to determine dynamic stability characteristics for various re-entry capsule designs.

This thesis discusses the development and testing of a launching method called the grabber for use in the MSBS Subsonic Wind Tunnel at NASA Langley Research Center. Aerodynamic tests were run to support the use of this method and compare the …


Accurate Covariance Estimation For Pose Data From Iterative Closest Point Algorithm, Rick H. Yuan, Clark N. Taylor, Scott L. Nykl 2023 Air Force Institute of Technology

Accurate Covariance Estimation For Pose Data From Iterative Closest Point Algorithm, Rick H. Yuan, Clark N. Taylor, Scott L. Nykl

Faculty Publications

One of the fundamental problems of robotics and navigation is the estimation of the relative pose of an external object with respect to the observer. A common method for computing the relative pose is the iterative closest point (ICP) algorithm, where a reference point cloud of a known object is registered against a sensed point cloud to determine relative pose. To use this computed pose information in downstream processing algorithms, it is necessary to estimate the uncertainty of the ICP output, typically represented as a covariance matrix. In this paper, a novel method for estimating uncertainty from sensed data is …


Digital Commons powered by bepress