Open Access. Powered by Scholars. Published by Universities.®

Other Astrophysics and Astronomy Commons

Open Access. Powered by Scholars. Published by Universities.®

432 Full-Text Articles 679 Authors 101,566 Downloads 93 Institutions

All Articles in Other Astrophysics and Astronomy

Faceted Search

432 full-text articles. Page 7 of 17.

Figure 8: Simulation Results For Flux Tube Entropy And Specific Entropy In Saturn's Magnetosphere, Xuanye Ma, Peter A. Delamere, Michelle F. Thomsen, Antonius Otto, Bishwa Neupane, Brandon Burkholder, Katariina Nykyri 2019 Embry-Riddle Aeronautical University

Figure 8: Simulation Results For Flux Tube Entropy And Specific Entropy In Saturn's Magnetosphere, Xuanye Ma, Peter A. Delamere, Michelle F. Thomsen, Antonius Otto, Bishwa Neupane, Brandon Burkholder, Katariina Nykyri

Katariina Nykyri

No abstract provided.


Figure 3: Simulation Results For Flux Tube Entropy And Specific Entropy In Saturn's Magnetosphere, Xuanye Ma, Peter A. Delamere, Michelle F. Thomsen, Antonius Otto, Bishwa Neupane, Brandon Burkholder, Katariina Nykyri 2019 Embry-Riddle Aeronautical University

Figure 3: Simulation Results For Flux Tube Entropy And Specific Entropy In Saturn's Magnetosphere, Xuanye Ma, Peter A. Delamere, Michelle F. Thomsen, Antonius Otto, Bishwa Neupane, Brandon Burkholder, Katariina Nykyri

Katariina Nykyri

No abstract provided.


Figure 5: Simulation Results For Flux Tube Entropy And Specific Entropy In Saturn's Magnetosphere, Xuanye Ma, Peter A. Delamere, Michelle F. Thomsen, Antonius Otto, Bishwa Neupane, Brandon Burkholder, Katariina Nykyri 2019 Embry-Riddle Aeronautical University

Figure 5: Simulation Results For Flux Tube Entropy And Specific Entropy In Saturn's Magnetosphere, Xuanye Ma, Peter A. Delamere, Michelle F. Thomsen, Antonius Otto, Bishwa Neupane, Brandon Burkholder, Katariina Nykyri

Katariina Nykyri

No abstract provided.


Figure 9: Simulation Results For Flux Tube Entropy And Specific Entropy In Saturn's Magnetosphere, Xuanye Ma, Peter A. Delamere, Michelle F. Thomsen, Antonius Otto, Bishwa Neupane, Brandon Burkholder, Katariina Nykyri 2019 Embry-Riddle Aeronautical University

Figure 9: Simulation Results For Flux Tube Entropy And Specific Entropy In Saturn's Magnetosphere, Xuanye Ma, Peter A. Delamere, Michelle F. Thomsen, Antonius Otto, Bishwa Neupane, Brandon Burkholder, Katariina Nykyri

Katariina Nykyri

No abstract provided.


Figure 2: Simulation Results For Flux Tube Entropy And Specific Entropy In Saturn's Magnetosphere, Xuanye Ma, Peter A. Delamere, Michelle F. Thomsen, Antonius Otto, Bishwa Neupane, Brandon Burkholder, Katariina Nykyri 2019 Embry-Riddle Aeronautical University

Figure 2: Simulation Results For Flux Tube Entropy And Specific Entropy In Saturn's Magnetosphere, Xuanye Ma, Peter A. Delamere, Michelle F. Thomsen, Antonius Otto, Bishwa Neupane, Brandon Burkholder, Katariina Nykyri

Katariina Nykyri

No abstract provided.


Figure 10: Simulation Results For Flux Tube Entropy And Specific Entropy In Saturn's Magnetosphere, Xuanye Ma, Peter A. Delamere, Michelle F. Thomsen, Antonius Otto, Bishwa Neupane, Brandon Burkholder, Katariina Nykyri 2019 Embry-Riddle Aeronautical University

Figure 10: Simulation Results For Flux Tube Entropy And Specific Entropy In Saturn's Magnetosphere, Xuanye Ma, Peter A. Delamere, Michelle F. Thomsen, Antonius Otto, Bishwa Neupane, Brandon Burkholder, Katariina Nykyri

Katariina Nykyri

No abstract provided.


Figure 4: Simulation Results For Flux Tube Entropy And Specific Entropy In Saturn's Magnetosphere, Xuanye Ma, Peter A. Delamere, Michelle F. Thomsen, Antonius Otto, Bishwa Neupane, Brandon Burkholder, Katariina Nykyri 2019 Embry-Riddle Aeronautical University

Figure 4: Simulation Results For Flux Tube Entropy And Specific Entropy In Saturn's Magnetosphere, Xuanye Ma, Peter A. Delamere, Michelle F. Thomsen, Antonius Otto, Bishwa Neupane, Brandon Burkholder, Katariina Nykyri

Katariina Nykyri

No abstract provided.


Figure 1: Simulation Results For Flux Tube Entropy And Specific Entropy In Saturn's Magnetosphere, Xuanye Ma, Peter A. Delamere, Michelle F. Thomsen, Antonius Otto, Bishwa Neupane, Brandon Burkholder, Katariina Nykyri 2019 Embry-Riddle Aeronautical University

Figure 1: Simulation Results For Flux Tube Entropy And Specific Entropy In Saturn's Magnetosphere, Xuanye Ma, Peter A. Delamere, Michelle F. Thomsen, Antonius Otto, Bishwa Neupane, Brandon Burkholder, Katariina Nykyri

Katariina Nykyri

No abstract provided.


Figure 7: Simulation Results For Flux Tube Entropy And Specific Entropy In Saturn's Magnetosphere, Xuanye Ma, Peter A. Delamere, Michelle F. Thomsen, Antonius Otto, Bishwa Neupane, Brandon Burkholder, Katariina Nykyri 2019 Embry-Riddle Aeronautical University

Figure 7: Simulation Results For Flux Tube Entropy And Specific Entropy In Saturn's Magnetosphere, Xuanye Ma, Peter A. Delamere, Michelle F. Thomsen, Antonius Otto, Bishwa Neupane, Brandon Burkholder, Katariina Nykyri

Katariina Nykyri

No abstract provided.


Figure 6: Simulation Results For Flux Tube Entropy And Specific Entropy In Saturn's Magnetosphere, Xuanye Ma, Peter A. Delamere, Michelle F. Thomsen, Antonius Otto, Bishwa Neupane, Brandon Burkholder, Katariina Nykyri 2019 Embry-Riddle Aeronautical University

Figure 6: Simulation Results For Flux Tube Entropy And Specific Entropy In Saturn's Magnetosphere, Xuanye Ma, Peter A. Delamere, Michelle F. Thomsen, Antonius Otto, Bishwa Neupane, Brandon Burkholder, Katariina Nykyri

Katariina Nykyri

No abstract provided.


Differential Photometry Of Active Galactic Nuclei Using Time Resolved Observations With The 1m Nickel Telescope Of Lick Observatory, Chance L. Spencer 2019 California Polytechnic State University, San Luis Obispo

Differential Photometry Of Active Galactic Nuclei Using Time Resolved Observations With The 1m Nickel Telescope Of Lick Observatory, Chance L. Spencer

Physics

Active galactic nuclei (AGNs) are exotic objects in the center of some galaxies with luminosities that can greatly outshine the stars of the host galaxy across the entire electromagnetic spectrum. The origin of the UV/optical light is thought to be due to accretion of material onto the supermassive black hole in their centers. Since these objects are too far away to resolve the gravitational sphere of influence of the black hole directly, we make use of a method called reverberation mapping. We measure the lag between the AGN power-law continuum emitted by the accretion disk and the Doppler-broadened emission lines …


Microcontroller Differential Gps To Subtract Signal Delay Due To Ambient Free Electrons In The Ionosphere, Diana Jane Swanson 2019 California Polytechnic State University, San Luis Obispo

Microcontroller Differential Gps To Subtract Signal Delay Due To Ambient Free Electrons In The Ionosphere, Diana Jane Swanson

Physics

The goal of this project is to create a Global Positioning System (GPS) receiver that is more precise than one GPS receiver on its own. The technique is to take the difference between a GPS receiver’s measured position and its actual position, then use radio frequency (RF) communication to send that differential value to another microcontroller GPS receiver. This differential value will be added to the measured second location to get a more accurate position for the second GPS receiver, thus creating a differential GPS.


Long-Term Dust Formation By Core Collapse Supernovae, Kelsie Marie Krafton 2019 Louisiana State University and Agricultural and Mechanical College

Long-Term Dust Formation By Core Collapse Supernovae, Kelsie Marie Krafton

LSU Doctoral Dissertations

Studying long-term dust formation by CCSNe is an important step toward understanding the large dust masses found in early galaxies. The amazing new discovery of approximately a solar mass of cold dust in the ejecta of SN 1987A has caused a complete re-evaluation of dust formation in core collapse supernovae (CCSNe). CCSNe form only a small amount of dust after three years, but SN 1987A has a dust mass that is several orders of magnitude larger after 25 years. A recent study of SN 2010jl by Gall et al. (2014) made the fascinating suggestion that dust is continuously forming in …


Arecibo Message, Joshua P. Tan 2019 CUNY La Guardia Community College

Arecibo Message, Joshua P. Tan

Open Educational Resources

This two week assignment asks students to interpret and analyze the 1974 Arecibo Message sent by Drake and Sagan. Week 1 introduces the concepts behind the construction of the message and engages with a critical analysis of the architecture and the contents of the message. Week 2 asks students to develop software in a Jupyter Notebook (available for free from the Anaconda Python Distribution) to interpret messages that were similar to those produced by Drake and Sagan.


Real-Time Rfi Mitigation In Radio Astronomy, Emily Ramey, Nick Joslyn, Richard Prestage, Michael Lam, Luke Hawkins, Tim Blattner, Mark Whitehead 2019 Washington University in St. Louis

Real-Time Rfi Mitigation In Radio Astronomy, Emily Ramey, Nick Joslyn, Richard Prestage, Michael Lam, Luke Hawkins, Tim Blattner, Mark Whitehead

Senior Honors Papers / Undergraduate Theses

As the use of wireless technology has increased around the world, Radio Frequency Interference (RFI) has become more and more of a problem for radio astronomers. Preventative measures exist to limit the presence of RFI, and programs exist to remove it from saved data, but the use of algorithms to detect and remove RFI as an observation is occurring is much less common. Such a method would be incredibly useful for observations in which the data must undergo several rounds of processing before being saved, as in pulsar timing studies. Strategies for real-time mitigation have been discussed and tested with …


Quantifying Lithochemical Diversity Of Martian Materials Using Hierarchical Clustering And A Similarity Index For Classification, Michael Conner Bouchard 2019 Washington University in St. Louis

Quantifying Lithochemical Diversity Of Martian Materials Using Hierarchical Clustering And A Similarity Index For Classification, Michael Conner Bouchard

Arts & Sciences Electronic Theses and Dissertations

We are currently living in the golden age of robotic exploration of Mars, with a continued robotic presence there since 1997. Next to Earth, Mars is the planet about which we have gathered the most geologic information. Unlike Earth, Mars does not appear to have plate tectonics, and the planet’s primary and secondary crust is dominated by basalts. Understanding the compositional diversity of the materials that make up the martian crust will give us a better insight into the geologic processes that formed the planet and its subsequent evolution. One large and growing source of martian surface compositions is the …


Machine Learning Pipeline For Exoplanet Classification, George Clayton Sturrock, Brychan Manry, Sohail Rafiqi 2019 Southern Methodist University

Machine Learning Pipeline For Exoplanet Classification, George Clayton Sturrock, Brychan Manry, Sohail Rafiqi

SMU Data Science Review

Planet identification has typically been a tasked performed exclusively by teams of astronomers and astrophysicists using methods and tools accessible only to those with years of academic education and training. NASA’s Exoplanet Exploration program has introduced modern satellites capable of capturing a vast array of data regarding celestial objects of interest to assist with researching these objects. The availability of satellite data has opened up the task of planet identification to individuals capable of writing and interpreting machine learning models. In this study, several classification models and datasets are utilized to assign a probability of an observation being an exoplanet. …


Induced Magnetic Dipole On Jupiter’S Moon Europa, Luke Francis, Michele Zanolin 2019 Embry-Riddle Aeronautical University

Induced Magnetic Dipole On Jupiter’S Moon Europa, Luke Francis, Michele Zanolin

Student Works

Physics can have some of the most unique and extraordinary applications of basic principles applied on a larger scale. This paper will explore the properties of induced magnetic dipoles and will examine this phenomenon directly from Jupiter's moon, Europa. These properties will be used to determine if there is liquid water beneath its icy surface and how this conclusion was verified. This will be accomplished using the concepts of magnetic dipoles and induced currents. Recent missions have also revealed estimates of the depth of Europa's subsurface ocean. There have been many measurements taken of Europa's magnetic field, and they are …


Dark Halos: The Windowed Power Spectrum, David Coria 2019 Kansas State University Libraries

Dark Halos: The Windowed Power Spectrum, David Coria

Kansas State University Undergraduate Research Conference

Today, it is believed that approximately 80 percent of the matter that comprises the universe takes the form of dark matter--a theorized substance that interacts with “normal” baryonic matter mostly through gravitational force. Through gravitation, dark matter creates potential wells that determine the motion of stars inside galaxies and galaxies inside galaxy clusters. Dark matter accumulates and forms roughly spherical structures called “dark halos”. Most galaxies and groups of galaxies are located inside such halos. Visible matter tends to cluster inside these halos because of the higher accumulation of dark matter and deeper gravitational wells. The power spectrum is obtained …


The Non-Linear Dynamics Of Barred Galaxy Evolution In Lcdm, Michael Petersen 2019 University of Massachusetts Amherst

The Non-Linear Dynamics Of Barred Galaxy Evolution In Lcdm, Michael Petersen

Doctoral Dissertations

The study of barred galaxy dynamics has had many successes explaining observed phenomena in barred galaxies both locally and distant, including our own Milky Way, a barred galaxy. However, the majority of this knowledge arises from either (a) analytic linear theory, which by definition cannot inform nonlinear processes, or (b) simulations which are subject to an unconstrained host of evolutionary mechanisms, including `real' dynamical processes and `artificial' numerical processes, and are thus difficult to interpret. This work chooses a path which attempts to take the best of both techniques, employing n-body simulations in the Lambda cold dark matter paradigm designed …


Digital Commons powered by bepress