Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Using Natural Phenomena To Study The Ionosphere, Joseph Benjamin Malins Nov 2019

Using Natural Phenomena To Study The Ionosphere, Joseph Benjamin Malins

Physics & Astronomy ETDs

This dissertation explores novel techniques for observing the ionosphere using natural signals. The ionosphere is a region of plasma hundreds of kilometers above the Earth that affects communication and remote sensing applications across the world. Traditional techniques for observing the ionosphere involve using man made radio signals, either to reflect the signal at HF frequencies or to pass several signals through the ionosphere and compare the difference the ionosphere makes in the signals. However, such techniques are limited by the ability of equipment to produce these signals and by the numerous laws and regulations governing transmission of signals in the …


Melissa: System Description And Spectral Features Of Pre- And Post-Midnight F-Region Echoes, Fabiano S. Rodrigues, Weijia Zhan, Marco A. Milla, B. G. Fejer, Eurico R. De Paula, Acacio C. Neto, Angela M. Santos, Inez S. Batista Nov 2019

Melissa: System Description And Spectral Features Of Pre- And Post-Midnight F-Region Echoes, Fabiano S. Rodrigues, Weijia Zhan, Marco A. Milla, B. G. Fejer, Eurico R. De Paula, Acacio C. Neto, Angela M. Santos, Inez S. Batista

All Physics Faculty Publications

Most of the low‐latitude ionospheric radar observations in South America come from the Jicamarca Radio Observatory, located in the western longitude sector (∼75°W). The deployment of the 30 MHz FAPESP‐Clemson‐INPE (FCI) coherent backscatter radar in the magnetic equatorial site of São Luis, Brazil, in 2001 allowed observations to be made in the eastern sector (∼45°W). However, despite being operational for several years (2001–2012), FCI only made observations during daytime and pre‐midnight hours, with a few exceptions. Here, we describe an upgraded system that replaced the FCI radar and present results of full‐night F‐region observations. This radar is referred to …


The International Community Coordinated Modeling Center Space Weather Modeling Capabilities Assessment: Overview Of Ionosphere/Thermosphere Activities, Ludger Scherliess, I. Tsagouri, E. Yizengaw, S. Bruinsma, J. S. Shim, A. Coster, J. M. Retterer Apr 2019

The International Community Coordinated Modeling Center Space Weather Modeling Capabilities Assessment: Overview Of Ionosphere/Thermosphere Activities, Ludger Scherliess, I. Tsagouri, E. Yizengaw, S. Bruinsma, J. S. Shim, A. Coster, J. M. Retterer

All Physics Faculty Publications

The Earth's ionosphere/thermosphere (I/T) system exhibits complicated weather variability that can have adverse effects on human operations and systems, and consequently, there is a need for both accurate and reliable specifications and forecasts for this region. As part of the international effort to evaluate and assess the predictive capabilities of space weather models, four working groups for the I/T system have been created with the goal to devise a concerted model validation effort for the I/T environment. This paper presents an overview of the team efforts and reports on the progress made. As a first step, the working teams have …


Global Ionosonde And Gps Radio Occultation Sporadic-E Intensity And Height Comparison, Joshua Y. Gooch Mar 2019

Global Ionosonde And Gps Radio Occultation Sporadic-E Intensity And Height Comparison, Joshua Y. Gooch

Theses and Dissertations

A global, multi-year comparison of low and mid-latitude COSMIC GPS radio occultation (RO) sporadic-E (Es) plasma frequency and altitude and Digisonde blanketing frequency (fbEs) and altitude within 150 km and 30 minutes of each other. RO methods used to estimate the intensity of the Es layer include the scintillation index S4, total electron content (TEC) with both a constant and variable Es cloud thickness, and an Abel transform. The S4 and TEC with varying thickness techniques both under-represent the fbEs values while the TEC with constant thickness and Abel transform better estimate Digisonde fbEs values. …


Modeling High-Altitude Nuclear Detonations Using Existing Ionospheric Models, Sophia G. Schwalbe Mar 2019

Modeling High-Altitude Nuclear Detonations Using Existing Ionospheric Models, Sophia G. Schwalbe

Theses and Dissertations

One threat to the United States is a nuclear weapon being detonated at high altitude over the country. The resulting electromagnetic pulse (EMP) could devastate the nation. Despite its destructive nature, the response of the ionosphere to such an event is poorly understood. This study assesses if existing ionospheric models, which are used to nowcast and forecast ionospheric changes, can be used to model the response to a high-altitude nuclear detonation (HAND). After comparing five ionosphere models, the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) was selected and modified to incorporate an array of F10.7 indices to serve as a proxy for …


Radar Studies Of Height-Dependent Equatorial F Region Vertical And Zonal Plasma Drifts, S. A. Shidler, F. S. Rodrigues, B. G. Fejer, M. A. Milla Feb 2019

Radar Studies Of Height-Dependent Equatorial F Region Vertical And Zonal Plasma Drifts, S. A. Shidler, F. S. Rodrigues, B. G. Fejer, M. A. Milla

All Physics Faculty Publications

We present the results of an analysis of long-term measurements of ionospheric F region E × B plasma drifts in the American/Peruvian sector. The analysis used observations made between 1986 and 2017 by the incoherent scatter radar of the Jicamarca Radio Observatory. Unlike previous studies, we analyzed both vertical and zonal components of the plasma drifts to derive the geomagnetically quiet time climatological variation of the drifts as a function of height and local time. We determine the average behavior of the height profiles of the drifts for different seasons and distinct solar flux conditions. Our results show good agreement …


Large-Scale Gravity Wave Perturbations In The Mesopause Region Above Northern Hemisphere Midlatitudes During Autumnal Equinox: A Joint Study By The Usu Na Lidar And Whole Atmosphere Community Climate Model, Xuguang Cai, Titus Yuan, Han-Li Liu Jan 2019

Large-Scale Gravity Wave Perturbations In The Mesopause Region Above Northern Hemisphere Midlatitudes During Autumnal Equinox: A Joint Study By The Usu Na Lidar And Whole Atmosphere Community Climate Model, Xuguang Cai, Titus Yuan, Han-Li Liu

Xuguang Cai

To investigate gravity wave (GW) perturbations in the midlatitude mesopause region during boreal equinox, 433h of continuous Na lidar full diurnal cycle temperature measurements in September between 2011 and 2015 are utilized to derive the monthly profiles of GW-induced temperature variance, T2, and the potential energy density (PED). Operating at Utah State University (42°N, 112°W), these lidar measurements reveal severe GW dissipation near 90km, where both parameters drop to their minima (∼ 20K2 and ∼50m2s−2, respectively). The study also shows that GWs with periods of 3–5h dominate the midlatitude mesopause region during …