Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Nuclear

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 55

Full-Text Articles in Physics

Investigation Of Isomer Ratios In The Reactions (Γ, N) And (N, 2N) On Nuclei 76Ge And 82Se, Satimbay Palvanov, Turgunali Akhmadzhanov Dec 2019

Investigation Of Isomer Ratios In The Reactions (Γ, N) And (N, 2N) On Nuclei 76Ge And 82Se, Satimbay Palvanov, Turgunali Akhmadzhanov

Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences

The method of the induced activity measured the isomeric yield ratios and cross-sections ratios of reactions (γ, n) and (n, 2n) on nuclei 76Ge and 82Se. Samples of natural have been irradiated in the bremsstrahlung beam of the betatron SB-50 of National University of Uzbekistan in the energy range of 10-35 MeV with energy step of 1 MeV. For 14 MeV neutron irradiation, we used the NG-150 neutron generator of Institute of Nuclear Physics. The gamma spectra reactions products were measured with a spectroscopic system consisting of HPGe detector CANBERRA with energy resolution …


Beam Asymmetry Σ For The Photoproduction Of Η And Ή Mesons At Eγ = 8.8gev, S. Adhikari, A. Ali, M. J. Amaryan, A. Austregesilo, F. Barbosa, J. Barlow, A. Barnes, E. Barriga, R. Barsotti, T. D. Beattie, V. V. Berdnikov, T. Black, N. Wickramaarachchi, B. Zihlmann, The Gluex Collaboration Dec 2019

Beam Asymmetry Σ For The Photoproduction Of Η And Ή Mesons At Eγ = 8.8gev, S. Adhikari, A. Ali, M. J. Amaryan, A. Austregesilo, F. Barbosa, J. Barlow, A. Barnes, E. Barriga, R. Barsotti, T. D. Beattie, V. V. Berdnikov, T. Black, N. Wickramaarachchi, B. Zihlmann, The Gluex Collaboration

Physics Faculty Publications

We report on the measurement of the beam asymmetry Σ for the reactions →γp→pη and →γp→pη′ from the GlueX experiment using an 8.2–8.8-GeV linearly polarized tagged photon beam incident on a liquid hydrogen target in Hall D at Jefferson Laboratory. These measurements are made as a function of momentum transfer −t with significantly higher statistical precision than our earlier η measurements and are the first measurements of η′ in this energy range. We compare the results to theoretical predictions based on t-channel quasiparticle exchange. We also compare the ratio of Ση to Ση′ to these models as …


Generalized Parton Distributions And Pseudodistributions, Anatoly V. Radyushkin Dec 2019

Generalized Parton Distributions And Pseudodistributions, Anatoly V. Radyushkin

Physics Faculty Publications

We derive one-loop matching relations for the Ioffe-time distributions (ITDs) related to the pion distribution amplitude (DA) and generalized parton distributions (GPDs). They are obtained from a universal expression for the one-loop correction in an operator form, and will be used in the ongoing lattice calculations of the pion DA and GPDs within the parton pseudodistributions approach.


Parton Distribution Functions From Loffe Time Pseudo-Distributions, Bálint Joó, Joseph Karpie, Kostas Orginos, Anatoly V. Radyushkin, David Richards, Savvas Zafeiropoulos Dec 2019

Parton Distribution Functions From Loffe Time Pseudo-Distributions, Bálint Joó, Joseph Karpie, Kostas Orginos, Anatoly V. Radyushkin, David Richards, Savvas Zafeiropoulos

Physics Faculty Publications

In this paper, we present a detailed study of the unpolarized nucleon parton distribution function (PDF) employing the approach of parton pseudo-distribution functions. We perform a systematic analysis using three lattice ensembles at two volumes, with lattice spacings a = 0.127 fm and a = 0.094 fm, for a pion mass of roughly 400 MeV. With two lattice spacings and two volumes, both continuum limit and infinite volume extrapolation systematic errors of the PDF are considered. In addition to the x dependence of the PDF, we compute their first two moments and compare them with the pertinent phenomenological determinations.


Gamma-Ray Radiation Effects In Graphene-Based Transistors With H-Bn Nanometer Film Substrates, E. J. Cazalas, Michael R. Hogsed, S. R. Vangala, Michael R. Snure, John W. Mcclory Nov 2019

Gamma-Ray Radiation Effects In Graphene-Based Transistors With H-Bn Nanometer Film Substrates, E. J. Cazalas, Michael R. Hogsed, S. R. Vangala, Michael R. Snure, John W. Mcclory

Faculty Publications

Radiation effects on graphene field effect transistors (GFETs) with hexagonal boron nitride (h-BN) thin film substrates are investigated using 60Co gamma-ray radiation. This study examines the radiation response using many samples with varying h-BN film thicknesses (1.6 and 20 nm thickness) and graphene channel lengths (5 and 10 μm). These samples were exposed to a total ionizing dose of approximately 1 Mrad(Si). I-V measurements were taken at fixed time intervals between irradiations and postirradiation. Dirac point voltage and current are extracted from the I-V measurements, as well as mobility, Dirac voltage hysteresis, and the total number of GFETs that remain …


Measurements Of The 16c + 12c And 16c + 13c Fusion Cross Sections With Implications For Astrophysics, Ashley Ann Hood Nov 2019

Measurements Of The 16c + 12c And 16c + 13c Fusion Cross Sections With Implications For Astrophysics, Ashley Ann Hood

LSU Doctoral Dissertations

The fusion of neutron-rich nuclei is of interest to nuclear astrophysics and nuclear structure. X-ray superbursts are powered by runaway thermonuclear burning deep inside of a neutron star, where heating from the pycnonuclear fusion of neutron-rich isotopes is an important heat source. Experimental measurements of fusion cross sections of neutron-rich isotopes have provided insights regarding nucleon transfer and nuclear structure properties affecting fusion. Recently, the 15C + 12C total fusion cross section was measured using a 15C beam produced by the in-flight beam production facility, which is part of the Argonne Tandem LINAC Accelerator System (ATLAS) at …


Alpha Capture Reaction Rates For Nucleosynthesis Within An Ab Initio Framework, Alison Constance Dreyfuss Nov 2019

Alpha Capture Reaction Rates For Nucleosynthesis Within An Ab Initio Framework, Alison Constance Dreyfuss

LSU Doctoral Dissertations

Clustering in nuclear systems has broad impacts on all phases of stellar burning, and plays a significant role in our understanding of nucleosynthesis, or how and where nuclei are produced in the universe. The role of alpha particles in particular is extremely important for nuclear astrophysics: 4He was one of the earliest elements produced in the Big Bang, it is one of the most abundant elements in the universe, and helium burning -- in particular, the triple-alpha process -- is one of the most important ``engines'' in stars. To better understand nucleosynthesis and stellar burning, then, it is important …


Weaponizing Radioactive Medical Waste - The Looming Threat, Shreekumar Menon, Vagish Kumar L.S. Nov 2019

Weaponizing Radioactive Medical Waste - The Looming Threat, Shreekumar Menon, Vagish Kumar L.S.

International Journal of Nuclear Security

Across the globe, use of radioactive substances for medical treatment, by hospitals has resulted in generation of toxic wastes on a large scale. Disposal of these wastes are being entrusted to waste disposal vendors. Environmental concerns, pressures, restrictions and high labor costs, compel these vendors to dump these wastes in third world countries, where enforcement and awareness are substantially low. Unrestricted access to these waste dumps is an open invitation to terror organizations to extract toxic substances and fabricate crude dirty bombs to threaten public safety, and cause low-level contamination of sensitive installations. It is therefore imperative to create an …


Longitudinal Bunch Profile Diagnostic For Magnetized Electron Beams, Mark Stefani, Fay Hannon Nov 2019

Longitudinal Bunch Profile Diagnostic For Magnetized Electron Beams, Mark Stefani, Fay Hannon

Electrical & Computer Engineering Faculty Publications

The study of magnetized electron beam has become a high priority for its use in ion beam cooling as part of electron ion colliders and the potential of easily forming flat beams with a large aspect ratio. In this paper, a new diagnostic is described with the purpose of studying longitudinal and transverse magnetized beam properties. The device is a modification to a typical pepper-pot. Specifically, this 1D pepper-pot was designed for use with a transverse deflecting cavity for longitudinal bunch profile measurements of magnetized beams.


Measurement Of The Cross Sections For Inclusive Electron Scattering In The E12-14-012 Experiment At Jefferson Lab, M. Murphy, H. Dai, D. Abrams, A. M. Ankowski, B. Aljawrneh, S. Alsalmi, J. Bane, S. Barcus, O. Benhar, V. Bellini, J. Bericic, D. Biswas, A. Camsonne, J. Castellanos, J.-P. Chen, M. E. Christy, K. Craycraft, R. Cruz-Torres, D. Day, S.-C. Dusa, E. Fuchey, T. Gautam, C. Giusti, J. Gomez, C. Gu, T. Hague, J.-O. Hanson, F. Hauenstein, D. W. Higinbotham, C. E. Hyde, C. M. Jen, C. Keppel, S. Li, R. Lindgren, H. Liu, C. Mariani, R. E. Mcclellan, D. Meekins, R. Michaels, M. Mihovilovic, D. Nguyen, M. Nycz, L. Ou, B. Pandey, V. Pandey, K. Park, G. Perera, A. J. R. Puckett, S. N. Santiesteban, S. Širca, T. Su, L. Tang, Y. Tian, N. Ton, B. Wojtsekhowski, S. Wood, Z. Ye, J. Zhang, The Jefferson Lab Hall A Collaboration Nov 2019

Measurement Of The Cross Sections For Inclusive Electron Scattering In The E12-14-012 Experiment At Jefferson Lab, M. Murphy, H. Dai, D. Abrams, A. M. Ankowski, B. Aljawrneh, S. Alsalmi, J. Bane, S. Barcus, O. Benhar, V. Bellini, J. Bericic, D. Biswas, A. Camsonne, J. Castellanos, J.-P. Chen, M. E. Christy, K. Craycraft, R. Cruz-Torres, D. Day, S.-C. Dusa, E. Fuchey, T. Gautam, C. Giusti, J. Gomez, C. Gu, T. Hague, J.-O. Hanson, F. Hauenstein, D. W. Higinbotham, C. E. Hyde, C. M. Jen, C. Keppel, S. Li, R. Lindgren, H. Liu, C. Mariani, R. E. Mcclellan, D. Meekins, R. Michaels, M. Mihovilovic, D. Nguyen, M. Nycz, L. Ou, B. Pandey, V. Pandey, K. Park, G. Perera, A. J. R. Puckett, S. N. Santiesteban, S. Širca, T. Su, L. Tang, Y. Tian, N. Ton, B. Wojtsekhowski, S. Wood, Z. Ye, J. Zhang, The Jefferson Lab Hall A Collaboration

Physics Faculty Publications

The E12-14-012 experiment performed at Jefferson Lab Hall A has collected inclusive electron-scattering data for different targets at the kinematics corresponding to beam energy 2.222 GeV and scattering angle 15.54°. Here we present a comprehensive analysis of the collected data and compare the double-differential cross sections for inclusive scattering of electrons, extracted using solid targets (aluminum, carbon, and titanium) and a closed argon-gas cell. The data extend over broad range of energy transfer, where quasielastic interaction, Δ-resonance excitation, and inelastic scattering yield contributions to the cross section. The double-differential cross sections are reported with high precision (∼3%) for all targets …


Collinear Factorization In Wide-Angle Hadron Pair Production In E + E − Annihilation, E. Moffat, T. C. Rogers, N. Sato, A. Signori Nov 2019

Collinear Factorization In Wide-Angle Hadron Pair Production In E + E − Annihilation, E. Moffat, T. C. Rogers, N. Sato, A. Signori

Physics Faculty Publications

We compute the inclusive unpolarized dihadron production cross section in the far from back-to-back region of e+ e− annihilation in leading order pQCD using existing fragmentation function fits and standard collinear factorization, focusing on the large transverse momentum region where transverse momentum is comparable to the hard scale (the center-of-mass energy). We compare with standard transverse-momentum-dependent (TMD) fragmentation function-based predictions intended for the small transverse momentum region with the aim of testing the expectation that the two types of calculation roughly coincide at intermediate transverse momentum. We find significant tension, within the intermediate transverse momentum region, between calculations done with …


Transverse Uncorrelated Emittance Diagnostic For Magnetized Electron Beams, Fay Hannon, Mark Stefani Oct 2019

Transverse Uncorrelated Emittance Diagnostic For Magnetized Electron Beams, Fay Hannon, Mark Stefani

Electrical & Computer Engineering Faculty Publications

The study of magnetized electron beam has become a high priority for its use in ion beam cooling as part of electron ion colliders and the potential of easily forming flat beams for various applications. In this paper, a purpose-specific diagnostic is described with the intention of studying transverse magnetized beam properties. The device is a modification to the classic pepper-pot, used in this context to measure the uncorrelated components of transverse emittance in addition to the typical effective emittance. The limitations of traditional methods are discussed, and simulated demonstrations of the new technique shown.


Nuclear Theory And Event Generators For Charge-Changing Neutrino Reactions, J. W. Van Orden, T. W. Donnelly Oct 2019

Nuclear Theory And Event Generators For Charge-Changing Neutrino Reactions, J. W. Van Orden, T. W. Donnelly

Physics Faculty Publications

Semi-inclusive CCν cross sections based on factorized cross sections are studied for a selection of spectral function models with the objective of facilitating the choice of models for use as input into event generators. The basic formalism for such cross sections is presented along with an introduction to constructing spectral functions for simple models based on the independent-particle shell model, the relativistic Fermi gas model (RFG), and a local density approximation (LDA) based on the RFG. Spectral functions for these models are shown for 16O along with a more sophisticated model which includes nucleon-nucleon interactions [AlvarezRuso et al., Prog. …


Validation Of Neutrino Energy Estimation Using Electron Scattering Data, Mariana Khachatryan Oct 2019

Validation Of Neutrino Energy Estimation Using Electron Scattering Data, Mariana Khachatryan

Physics Theses & Dissertations

To study neutrino oscillations, the knowledge of the initial neutrino energy is required. This energy cannot be determined directly because neutrino beams have a broad energy distribution. Instead, the initial energy for each event is estimated from the final state particles of a neutrino-nucleus interaction using two main approaches. It can be determined either from the total energy of all the final state particles or, if the neutrino scatters quasi-elastically from a bound nucleon, then the initial energy can be calculated approximately using the scattered angle and energy of the outgoing charged lepton. This requires a detailed understanding of neutrino-nucleus …


Gamma-Ray Bursts Induced By Turbulent Reconnection, A. Lazarian, Bing Zhang, Siyao Xu Sep 2019

Gamma-Ray Bursts Induced By Turbulent Reconnection, A. Lazarian, Bing Zhang, Siyao Xu

Physics & Astronomy Faculty Research

We revisit the Internal-Collision-induced MAgnetic Reconnection and Turbulence model of gamma-ray bursts (GRBs) in view of the advances made in understanding of both relativistic magnetic turbulence and relativistic turbulent magnetic reconnection. We identify the kink instability as the most natural way of changing the magnetic configuration to release the magnetic free energy through magnetic reconnection, as well as driving turbulence that enables fast turbulent reconnection. We show that this double role of the kink instability is important for explaining the prompt emission of GRBs. Our study confirms the critical role that turbulence plays in boosting reconnection efficiency in GRBs and …


Closing The Nuclear Fuel Cycle With A Simplified Minor Actinide Lanthanide Separation Process (Alsep) And Additive Manufacturing, Artem V. Gelis, Peter Kozak, Andrew T. Breshears, M. Alex Brown, Cari Launiere, Emily L. Campbell, Gabreil B. Hall, Tatiana G. Levitskaia, Vanessa E. Holfeltz, Gregg J. Lumetta Sep 2019

Closing The Nuclear Fuel Cycle With A Simplified Minor Actinide Lanthanide Separation Process (Alsep) And Additive Manufacturing, Artem V. Gelis, Peter Kozak, Andrew T. Breshears, M. Alex Brown, Cari Launiere, Emily L. Campbell, Gabreil B. Hall, Tatiana G. Levitskaia, Vanessa E. Holfeltz, Gregg J. Lumetta

Chemistry and Biochemistry Faculty Research

Expanded low-carbon baseload power production through the use of nuclear fission can be enabled by recycling long-lived actinide isotopes within the nuclear fuel cycle. This approach provides the benefits of (a) more completely utilizing the energy potential of mined uranium, (b) reducing the footprint of nuclear geological repositories, and (c) reducing the time required for the radiotoxicity of the disposed waste to decrease to the level of uranium ore from one hundred thousand years to a few hundred years. A key step in achieving this goal is the separation of long-lived isotopes of americium (Am) and curium (Cm) for recycle …


Muon Capture In Nuclei: An Ab Initio Approach Based On Green's Function Monte Carlo Methods, A. Lovato, N. Rocco, Rocco Schiavilla Sep 2019

Muon Capture In Nuclei: An Ab Initio Approach Based On Green's Function Monte Carlo Methods, A. Lovato, N. Rocco, Rocco Schiavilla

Physics Faculty Publications

An ab initio Green’s function Monte Carlo (GFMC) method is introduced for calculating total rates of muon weak capture in light nuclei with mass number A ≤ 12. As a first application of the method, we perform a calculation of the rate in 3H and 4He in a dynamical framework based on realistic two- and three-nucleon interactions and realistic nuclear charge-changing weak currents. The currents include one- and two-body terms induced by π-and ρ-meson exchange, and N-to-Δ excitation, and are constrained to reproduce the empirical value of the Gamow-Teller matrix element in tritium. We investigate the sensitivity of …


Yields Of Weakly Bound Light Nuclei As A Probe Of The Statistical Hadronization Model, Yiming Cai, Thomas D. Cohen, Boris A. Gelman, Yukari Yamauchi Aug 2019

Yields Of Weakly Bound Light Nuclei As A Probe Of The Statistical Hadronization Model, Yiming Cai, Thomas D. Cohen, Boris A. Gelman, Yukari Yamauchi

Publications and Research

The statistical hadronization model successfully describes the yields of hadrons and light nuclei from central heavy-ion collisions over a wide range of energies. It is a simple and efficient phenomenological framework in which the relative yields for very high energy collisions are essentially determined by a single model parameter—the chemical freeze-out temperature. Recent measurements of yields of hadrons and light nuclei covering over nine orders of magnitudes from the ALICE collaboration at the Large Hadron Collider were described by the model with remarkable accuracy with a chemical freeze-out temperature of 156.5 ± 1.5 MeV. A key physical question is whether …


The Manhattan Project And The Globalization Of Nuclear Weapons, Cole Schreiber, Paul Shand Aug 2019

The Manhattan Project And The Globalization Of Nuclear Weapons, Cole Schreiber, Paul Shand

Summer Undergraduate Research Program (SURP) Symposium




Single-Neutron States In Titanium Isotopes, Jessica Nebel-Crosson Jul 2019

Single-Neutron States In Titanium Isotopes, Jessica Nebel-Crosson

Physics and Astronomy Summer Fellows

Current theory regarding the collective behavior of exotic nuclei systematically over-predicts the probabilities of exciting those collective states. The theory lacks any adjustable parameters, however, the model inputs are characteristics of single particle states which we are attempting to verify through neutron transfer into a 50Ti target.


Electromagnetic Sum Rules And Response Functions From The Symmetry-Adapted No-Core Shell Model, Robert Byron Baker Jul 2019

Electromagnetic Sum Rules And Response Functions From The Symmetry-Adapted No-Core Shell Model, Robert Byron Baker

LSU Doctoral Dissertations

Recent developments in ab initio nuclear structure have provided us with a variety of many-body methods capable of describing nuclei into the medium-mass region of the chart of nuclides. One of these, the symmetry-adapted no-core shell model (SA-NCSM), capitalizes on inherent symmetries of the nucleus and is uniquely suited to examine the underlying physics of dynamical quantities, such as the response function.

We examine the applicability of the SA-NCSM to calculations of these quantities and assess the quality of its inputs by calculating electromagnetic sum rules and response functions with the Lanczos sum rule method and Lanczos response function method, …


Finding And Analyzing U235 And U238 Ternary Fission Events In The Niffte Fissiontpc, Gabriel A. Oman Jun 2019

Finding And Analyzing U235 And U238 Ternary Fission Events In The Niffte Fissiontpc, Gabriel A. Oman

Physics

In this analysis, the differences between ternary and binary fission were explored using data from the NIFFTE Collaboration’s fission time projection chamber (TPC). The ratio of binary-to-ternary events for U-235 and U-238 as a function of neutron kinetic energy in the range of 1-30 MeV is presented. The typical value of the ratio is approximately 105 binary fissions per ternary fission, in agreement with previously published measurements. Future work will involve distinguishing the fissions of the two isotopes to provide more insight into this rare process.


An In-Situ Study Of The Aqueous Speciation Of Uranium (Vi) Under Hydrothermal Conditions, Diwash Dhakal May 2019

An In-Situ Study Of The Aqueous Speciation Of Uranium (Vi) Under Hydrothermal Conditions, Diwash Dhakal

MSU Graduate Theses

Rigorous study of the speciation distribution of uranyl-chloride bearing solutions under hydrothermal conditions is important to understand the transport mechanism of uranium underground, which is of uttermost interest to parties studying the geological uranium deposits and those studying the possibilities of geological repositories for spent nuclear waste. I report an in-situ Raman spectroscopic study of the speciation distribution of aqueous uranyl-chloride complexes upto 500°C conducted using a HDAC as the high PT spectroscopic cell. The samples studied contained the species UO22+, UO2Cl+, UO2Cl20 and UO2Cl3- …


Developing Nucleon Self-Energies To Generate The Ingredients For The Description Of Nuclear Reactions, Mack Charles Atkinson May 2019

Developing Nucleon Self-Energies To Generate The Ingredients For The Description Of Nuclear Reactions, Mack Charles Atkinson

Arts & Sciences Electronic Theses and Dissertations

The nucleon self-energies of 40Ca, 48Ca, and 208Pb are determined using a

nonlocal dispersive optical model (DOM). By enforcing the dispersion relation

connecting the real and imaginary part of the self-energy, both experimental

scattering data and nuclear structure data are used to constrain these

self-energies. The ability to calculate both bound and scattering states

simultaneously puts these self-energies in a unique position to consistently

describe exclusive knockout reactions such as (e,e'p). Using the

well-constrained self-energy describing 40Ca, the distorted-wave impulse

approximation (DWIA) description of the (e,e'p) reaction is shown to be valid

for outgoing proton kinetic energies around 100 MeV. …


Isotopically-Resolved Neutron Cross Sections As Probe Of The Nuclear Optical Potential, Cole Davis Pruitt May 2019

Isotopically-Resolved Neutron Cross Sections As Probe Of The Nuclear Optical Potential, Cole Davis Pruitt

Arts & Sciences Electronic Theses and Dissertations

Neutron scattering experiments provide direct access to the forces experienced by nucleons in the nuclear environment. Due to the experimental difficulty of cross section measurements with neutrons, isotopically-resolved neutron scattering cross sections are sorely needed as inputs for many nuclear models. This dissertation presents the results from a campaign of isotope-specific neutron total cross section measurements on 16,18O, 58,64Ni, 112,124Sn, and 103Rh from 3-450 MeV and elastic scattering differential cross section measurements on 112,nat,124Sn at 11 and 17 MeV. Equipped with these new data and with computational improvements to the Dispersive Optical Model (DOM), we present DOM treatments of 16,18O, …


Nonperturbative-Transverse-Momentum Broadening In Dihadron Angular Correlations In √Snn = 200 Gev Proton-Nucleus Collisions, Mike Daugherity, Donald Isenhower, Rusty Towell Apr 2019

Nonperturbative-Transverse-Momentum Broadening In Dihadron Angular Correlations In √Snn = 200 Gev Proton-Nucleus Collisions, Mike Daugherity, Donald Isenhower, Rusty Towell

Engineering and Physics

The PHENIX collaboration has measured high-pT dihadron correlations in p+p, p+Al, and p+Au collisions at √sNN=200 GeV. The correlations arise from inter- and intrajet correlations and thus have sensitivity to nonperturbative effects in both the initial and final states. The distributions of pout, the transverse-momentum component of the associated hadron perpendicular to the trigger hadron, are sensitive to initial- and final-state transverse momenta. These distributions are measured multidifferentially as a function of xE, the longitudinal momentum fraction of the associated hadron with respect to the trigger hadron. The near-side pout widths, sensitive to fragmentation transverse momentum, show no significant broadening …


Source Term Estimation Of Atmospheric Pollutants Using An Ensemble Of Hysplit Concentration Simulations, Casey L. Zoellick Mar 2019

Source Term Estimation Of Atmospheric Pollutants Using An Ensemble Of Hysplit Concentration Simulations, Casey L. Zoellick

Theses and Dissertations

In support of Comprehensive Nuclear-Test-Ban Treaty (CTBT) monitoring and nuclear event detection, this study works toward source term estimation (STE) of dispersive pollutants using a novel method|an ensemble of forward trajectory concentration simulations using a meteorology-coupled dispersion model. Traditionally a mathematically and physically rigorous problem, STE of a plume of atmospheric pollutants can be solved in a variety of ways depending on what is known regarding the emission, but little has been studied on the sensitivity between the horizontal resolution of the meteorology data in relation to the dispersion model and the results derived from known concentrations at multiple locations. …


Modeling High-Altitude Nuclear Detonations Using Existing Ionospheric Models, Sophia G. Schwalbe Mar 2019

Modeling High-Altitude Nuclear Detonations Using Existing Ionospheric Models, Sophia G. Schwalbe

Theses and Dissertations

One threat to the United States is a nuclear weapon being detonated at high altitude over the country. The resulting electromagnetic pulse (EMP) could devastate the nation. Despite its destructive nature, the response of the ionosphere to such an event is poorly understood. This study assesses if existing ionospheric models, which are used to nowcast and forecast ionospheric changes, can be used to model the response to a high-altitude nuclear detonation (HAND). After comparing five ionosphere models, the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) was selected and modified to incorporate an array of F10.7 indices to serve as a proxy for …


Exploring Laser Induced Breakdown Spectroscopy (Libs) For Post-Detonation Nuclear Forensics Debris Analysis, Justin Knoll, Chad Schools, David Fobar Mar 2019

Exploring Laser Induced Breakdown Spectroscopy (Libs) For Post-Detonation Nuclear Forensics Debris Analysis, Justin Knoll, Chad Schools, David Fobar

Purdue Workshop on Nonproliferation: Technology and Approaches

In the unlikely but catastrophic event of a nuclear terrorist attack our government leadership will need reliable information to rapidly inform critical decisions. This research explores the use of Laser Induced Breakdown Spectroscopy (LIBS) as a potential analysis tool in the National Technical Nuclear Forensics process. The current state of post detonation nuclear forensics requires ground and air samples be collected and shipped to state-of-the-art laboratories for radiochemical analysis. The samples undergo many measurements and useable data is produced as these measurements are completed. This data flows back into the process to guide additional measurements and inform the process of …


Β-Decay Half-Lives Of Neutron-Rich Nuclides In The A = 100 – 110 Mass Region, A. C. Dombos, A. Spyrou, F. Naqvi, S. J. Quinn, S. N. Liddick, A. Algora, T. Baumann, J. Brett, B. P. Crider, P. A. Deyoung, T. Ginter, J. Gombas, E. Kwan, S. Lyons, W.-J. Ong, A. Palmisano, J. Pereira, C. J. Prokop, D. P. Scriven, A. Simon, M. K. Smith, C. S. Sumithrarachchi Jan 2019

Β-Decay Half-Lives Of Neutron-Rich Nuclides In The A = 100 – 110 Mass Region, A. C. Dombos, A. Spyrou, F. Naqvi, S. J. Quinn, S. N. Liddick, A. Algora, T. Baumann, J. Brett, B. P. Crider, P. A. Deyoung, T. Ginter, J. Gombas, E. Kwan, S. Lyons, W.-J. Ong, A. Palmisano, J. Pereira, C. J. Prokop, D. P. Scriven, A. Simon, M. K. Smith, C. S. Sumithrarachchi

Faculty Publications

β-decay half-lives of neutron-rich nuclides in the A = 100–110 mass region have been measured using an implantation station installed inside of the Summing NaI(Tl) (SuN) detector at the National Superconducting Cyclotron Laboratory. Accurate half-lives for these nuclides are important for nuclear astrophysics, nuclear structure, and nuclear technology. The half-lives from the present work are compared with previous measurements, showing overall good agreement.