Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Nanoscience and Nanotechnology

Institution
Keyword
Publication
Publication Type

Articles 1 - 24 of 24

Full-Text Articles in Physics

Anomalous Stranski-Krastanov Growth Of (111)-Oriented Quantum Dots With Tunable Wetting Layer Thickness, Christopher F. Schuck, Simon K. Roy, Trent Garrett, Paul J. Simmonds Dec 2019

Anomalous Stranski-Krastanov Growth Of (111)-Oriented Quantum Dots With Tunable Wetting Layer Thickness, Christopher F. Schuck, Simon K. Roy, Trent Garrett, Paul J. Simmonds

Materials Science and Engineering Faculty Publications and Presentations

Driven by tensile strain, GaAs quantum dots (QDs) self-assemble on In0.52Al0.48As(111)A surfaces lattice-matched to InP substrates. In this study, we show that the tensile-strained self-assembly process for these GaAs(111)A QDs unexpectedly deviates from the well-known Stranski-Krastanov (SK) growth mode. Traditionally, QDs formed via the SK growth mode form on top of a flat wetting layer (WL) whose thickness is fixed. The inability to tune WL thickness has inhibited researchers’ attempts to fully control QD-WL interactions in these hybrid 0D-2D quantum systems. In contrast, using microscopy, spectroscopy, and computational modeling, we demonstrate that for GaAs(111)A QDs, we …


Studies Of Initial Growth Of Gan On Inn, Alaa Alnami Dec 2019

Studies Of Initial Growth Of Gan On Inn, Alaa Alnami

Graduate Theses and Dissertations

III-nitride materials have recently attracted much attention for applications in both the microelectronics and optoelectronics. For optoelectronic devices, III-nitride materials with tunable energy band gaps can be used as the active region of devices to enhance the absorption or emission. A such material is indium nitride (InN), which along with gallium nitride (GaN) and aluminum nitride (AlN) embody the very real promise of forming the basis of a broad spectrum, a high efficiency solar cell. One of the remaining complications in incorporating InN into a solar cell design is the effects of the high temperature growth of the GaN crystal …


Gamma-Ray Radiation Effects In Graphene-Based Transistors With H-Bn Nanometer Film Substrates, E. J. Cazalas, Michael R. Hogsed, S. R. Vangala, Michael R. Snure, John W. Mcclory Nov 2019

Gamma-Ray Radiation Effects In Graphene-Based Transistors With H-Bn Nanometer Film Substrates, E. J. Cazalas, Michael R. Hogsed, S. R. Vangala, Michael R. Snure, John W. Mcclory

Faculty Publications

Radiation effects on graphene field effect transistors (GFETs) with hexagonal boron nitride (h-BN) thin film substrates are investigated using 60Co gamma-ray radiation. This study examines the radiation response using many samples with varying h-BN film thicknesses (1.6 and 20 nm thickness) and graphene channel lengths (5 and 10 μm). These samples were exposed to a total ionizing dose of approximately 1 Mrad(Si). I-V measurements were taken at fixed time intervals between irradiations and postirradiation. Dirac point voltage and current are extracted from the I-V measurements, as well as mobility, Dirac voltage hysteresis, and the total number of GFETs that remain …


Near-Field And Far-Field Microscopic And Spectroscopic Characterizations Of Coupled Plasmonic, Excitonic And Polymeric Materials, Chih-Feng Wang Nov 2019

Near-Field And Far-Field Microscopic And Spectroscopic Characterizations Of Coupled Plasmonic, Excitonic And Polymeric Materials, Chih-Feng Wang

Optical Science and Engineering ETDs

The properties of localized surface plasmons (LSP) have been broadly utilized for chemical sensing, surface enhanced Raman spectroscopy, biomedical imaging and photothermal treatments. By exploiting well-established plasmonic effects, the spectroscopic investigation of intriguing quantum phenomena, such as excitonic interband and intersubband (ISB) transitions in semiconductor heterostructures, was examined and extended in both far- and near-field optical measurements. For far-field characterization, we used colloidal plasmonic Au nanorods (AuNRs) to increase the quantum efficiency of InGaAs/GaAs single quantum well. By analyzing the temperature-dependent photoluminescence enhancement as a function of GaAs capping layer thickness, we attributed the mechanism of the LSP enhancement to …


Electroosmotic Flow Of Viscoelastic Fluid In A Nanochannel Connecting Two Reservoirs, Lanju Mei, Shizhi Qian Nov 2019

Electroosmotic Flow Of Viscoelastic Fluid In A Nanochannel Connecting Two Reservoirs, Lanju Mei, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

Electroosmotic flow (EOF) of viscoelastic fluid with Linear Phan-Thien–Tanner (LPTT) constitutive model in a nanochannel connecting two reservoirs is numerically studied. For the first time, the influence of viscoelasticity on the EOF and the ionic conductance in the micro-nanofluidic interconnect system, with consideration of the electrical double layers (EDLs), is investigated. Regardless of the bulk salt concentration, significant enhancement of the flow rate is observed for viscoelastic fluid compared to the Newtonian fluid, due to the shear thinning effect. An increase in the ionic conductance of the nanochannel occurs for the viscoelastic fluid. The enhancement of the ionic conductance is …


Extreme Dynamics Of Nanomaterials Under High-Rate Mechanical Stimuli, Wanting Xie Oct 2019

Extreme Dynamics Of Nanomaterials Under High-Rate Mechanical Stimuli, Wanting Xie

Doctoral Dissertations

Nanomaterials demonstrate novel mechanical properties attributed to the extremely large interfacial area. At quasi-static rates, the interfacial interactions are crucial in mechanical behaviors, however, materials under extreme mechanical stimuli are rarely studied at nanoscale. With an advanced laser-induced projectile impact test, we perform supersonic impact of micro-projectiles on polymer films, multilayer graphene, carbon- based nanocomposites membranes as well as individual micro-fibers, to study the interface interactions in the high-rate regime, and develop a simplified model to characterize the ballistic performance of materials.


Modeling And Simulation Of Driven Nanopatterning Of Bulk-Material And Thin-Film Surfaces, Ashish Kumar Oct 2019

Modeling And Simulation Of Driven Nanopatterning Of Bulk-Material And Thin-Film Surfaces, Ashish Kumar

Doctoral Dissertations

Material nanostructures such as nanowires, quantum dots, and nanorings have a wide variety of applications in electronic and photonic devices among numerous others. Assembling uniformly arranged and consistently sized nanostructure patterns on solid material surfaces is a major challenge for nanotechnology. This dissertation focuses on developing predictive models capable of simulation and analysis of such nanopattern formation on bulk material and strained thin film surfaces. Single-layer atomic clusters (islands) of sizes larger than a critical size on crystalline conducting substrates undergo morphological instabilities when driven by an externally applied electric field or thermal gradient. We have conducted a systematic and …


Function And Dissipation In Finite State Automata - From Computing To Intelligence And Back, Natesh Ganesh Oct 2019

Function And Dissipation In Finite State Automata - From Computing To Intelligence And Back, Natesh Ganesh

Doctoral Dissertations

Society has benefited from the technological revolution and the tremendous growth in computing powered by Moore's law. However, we are fast approaching the ultimate physical limits in terms of both device sizes and the associated energy dissipation. It is important to characterize these limits in a physically grounded and implementation-agnostic manner, in order to capture the fundamental energy dissipation costs associated with performing computing operations with classical information in nano-scale quantum systems. It is also necessary to identify and understand the effect of quantum in-distinguishability, noise, and device variability on these dissipation limits. Identifying these parameters is crucial to designing …


Laser-Spark Multicharged Ion Implantation System ‒ Application In Ion Implantation And Neural Deposition Of Carbon In Nickel (111), Oguzhan Balki Oct 2019

Laser-Spark Multicharged Ion Implantation System ‒ Application In Ion Implantation And Neural Deposition Of Carbon In Nickel (111), Oguzhan Balki

Electrical & Computer Engineering Theses & Dissertations

Carbon ions generated by ablation of a carbon target using an Nd:YAG laser pulse (wavelength λ = 1064 nm, pulse width τ = 7 ns, and laser fluence of 10-110 J/cm2) are characterized. Time-of-flight analyzer, a three-mesh retarding field analyzer, and an electrostatic ion energy analyzer are used to study the charge and energy of carbon ions generated by laser ablation. The dependencies of the ion signal on the laser fluence, laser focal point position relative to target surface, and the acceleration voltage are described. Up to C4+ are observed. When no acceleration voltage is applied between …


A Multicarrier Technique For Monte Carlo Simulation Of Electrothermal Transport In Nanoelectronics, Tyler J. Spence Oct 2019

A Multicarrier Technique For Monte Carlo Simulation Of Electrothermal Transport In Nanoelectronics, Tyler J. Spence

Doctoral Dissertations

The field of microelectronics plays an important role in many areas of engineering and science, being ubiquitous in aerospace, industrial manufacturing, biotechnology, and many other fields. Today, many micro- and nanoscale electronic devices are integrated into one package. e capacity to simulate new devices accurately is critical to the engineering design process, as device engineers use simulations to predict performance characteristics and identify potential issues before fabrication. A problem of particular interest is the simulation of devices which exhibit exotic behaviors due to non-equilibrium thermodynamics and thermal effects such as self-heating. Frequently, it is desirable to predict the level of …


Increasing The Functionality Of Additive Manufacturing Through Atmospheric Microplasma And Nanotechnology, Alexander Jon Ulrich Aug 2019

Increasing The Functionality Of Additive Manufacturing Through Atmospheric Microplasma And Nanotechnology, Alexander Jon Ulrich

Doctoral Dissertations

Additive Manufacturing (AM) has been changing the manufacturing landscape for the last 20 years. As the interest and demand for both polymer and metal-based 3D printing has grown, the materials and machines used have increased in capabilities. Despite the growth and advancement, there are still a large number of improvements that can be made to add functionality to 3D printers. Metal AM, a subcategory of 3D printing, has garnered much attention among industrial applications with large companies such as General Electric trying to implement the technology to increase innovative designs for motors. Some of the limitations on AM have to …


Multifunctional Properties Of Gan Nws Applied To Nanometrology, Nanophotonics, And Scanning Probe Microscopy/Lithography, Mahmoud Behzadirad May 2019

Multifunctional Properties Of Gan Nws Applied To Nanometrology, Nanophotonics, And Scanning Probe Microscopy/Lithography, Mahmoud Behzadirad

Optical Science and Engineering ETDs

GaN nanowires are promising for optical and optoelectronic applications because of their waveguiding properties and large optical bandgap. Recent researches have shown superior mechanical properties of GaN nanowires which promises their use in new research areas e.g. nanometrology. In this work, we develop a scalable two-step top-down approach using interferometric lithography as well a bottom-up growth of NWs using MOCVD, to manufacture highly-ordered arrays of nanowires with atomic surface roughness and desired aspect-ratios to be used in nanophotonics and atomic precision metrology and lithography. Using this method, uniform nanowire arrays were achieved over large-areas (~1 mm2) with aspect-ratio …


Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu May 2019

Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu

Graduate Theses and Dissertations

Recently, various groups have demonstrated nano-scale engineering of nanostructures for optical to infrared wavelength plasmonic applications. Most fabrication technique processes, especially those using noble metals, requires an adhesion layer. Previously proposed theoretical work to support experimental measurement often neglect the effect of the adhesion layers. The first finding of this work focuses on the impact of the adhesion layer on nanoparticle plasmonic properties. Gold nanodisks with a titanium adhesion layer are investigated by calculating the scattering, absorption, and extinction cross-section with numerical simulations using a finite difference time domain (FDTD) method. I demonstrate that a gold nanodisk with an adhesive …


Modeling Multiphase Flow And Substrate Deformation In Nanoimprint Manufacturing Systems, Andrew Cochrane Apr 2019

Modeling Multiphase Flow And Substrate Deformation In Nanoimprint Manufacturing Systems, Andrew Cochrane

Nanoscience and Microsystems ETDs

Nanopatterns found in nature demonstrate that macroscopic properties of a surface are tied to its nano-scale structure. Tailoring the nanostructure allows those macroscopic surface properties to be engineered. However, a capability-gap in manufacturing technology inhibits mass-production of nanotechnologies based on simple, nanometer-scale surface patterns. This gap represents an opportunity for research and development of nanoimprint lithography (NIL) processes. NIL is a process for replicating patterns by imprinting a fluid layer with a solid, nano-patterned template, after which ultraviolet cure solidifies the fluid resulting in a nano-patterned surface. Although NIL has been demonstrated to replicate pattern features as small as 4 …


Probing Quantized Excitations And Many-Body Correlations In Transition Metal Dichalcogenides With Optical Spectroscopy, Shao-Yu Chen Mar 2019

Probing Quantized Excitations And Many-Body Correlations In Transition Metal Dichalcogenides With Optical Spectroscopy, Shao-Yu Chen

Doctoral Dissertations

Layered transition metal dichalcogenides (TMDCs) have attracted great interests in recent years due to their physical properties manifested in different polytypes: Hexagonal(H)-TMDC,which is semiconducting, exhibits strong Coulomb interaction and intriguing valleytronic properties; distorted octahedral(T’)-TMDC,which is semi-metallic, is predicted to exhibit rich nontrivial topological physics. In this dissertation,we employ the polarization-resolved micron-Raman/PL spectroscopy to investigate the optical properties of the atomic layer of several polytypes of TMDC. In the first part for polarization-resolved Raman spectroscopy, we study the lattice vibration of both H and T’-TMDC, providing a thorough understanding of the polymorphism of TMDCs. We demonstrate that Raman spectroscopy is a …


Analysis Of Dynamic Behaviour Of A Tensioned Carbon Nanotube In Thermal And Pressurized Environments, Ahmed Yinusa, Gbeminiyi Sobamowo Mar 2019

Analysis Of Dynamic Behaviour Of A Tensioned Carbon Nanotube In Thermal And Pressurized Environments, Ahmed Yinusa, Gbeminiyi Sobamowo

Karbala International Journal of Modern Science

In this paper, the dynamic behaviour of a tensioned single-walled carbon nanotubes (SWCNT) in thermal and pressurized environments is investigated analytically. With the applications of Bernoulli-Euler and thermal elasticity mechanics theories, the governing equation of motion are developed and solved using Laplace and Fourier transforms. The results of the close form solution in this work are in excellent agreements with past results in literature. From the parametric studies, it is established that as the magnitude of the pressure distribution at the surface increases, the deflection associated with the nanotube increases at any mode of vibration. However, a corresponding increase in …


Scanning Probe Microscopy Measurements On 2d Materials And Iridates, Armin Ansary Jan 2019

Scanning Probe Microscopy Measurements On 2d Materials And Iridates, Armin Ansary

Theses and Dissertations--Physics and Astronomy

In the past two decades, there has been a quest to understand and utilize novel materials such as iridates and two-dimensional (2D) materials. These classes of materials show a lot of interesting properties both in theoretical predictions as well as experimental results. Physical properties of some of these materials have been investigated using scanning probe measurements, along with other techniques.

One-dimensional (1D) catalytic etching was investigated in few-layer hexagonal boron nitride (hBN) films. Etching of hBN was shown to share several similarities with that of graphitic films. As in graphitic films, etch tracks in hBN commenced at film edges and …


Developments Towards High-Flux Silica Nanosphere Substrates To Support Conforming Self-Assembled Gold Nanoparticle Monolayers For Applications In Size-Selective Filtration, Ryan Baker Vincent Jan 2019

Developments Towards High-Flux Silica Nanosphere Substrates To Support Conforming Self-Assembled Gold Nanoparticle Monolayers For Applications In Size-Selective Filtration, Ryan Baker Vincent

Theses, Dissertations and Capstones

Hydrophobic thiol coated gold nanoparticles have recently been investigated for their ability to self-assemble into robust, ultra-thin, porous membranes at a liquid-vapor interface. Due to the well-ordered, hexagonal close-packed nanoparticle arrays formed during the self-assembly process, these 2-dimensional sheets have very well-defined pore structures and have been shown to span gaps of several microns under ideal conditions. While these self-assembled nanoparticle monolayers have very promising applications in the field of size-selective filtration due to their well-defined pore structure, they need to be supported by a rigid substrate with a large amount of open area. Here, tightly packed arrays of silica …


Straintronic Nanomagnetic Devices For Non-Boolean Computing, Md Ahsanul Abeed Jan 2019

Straintronic Nanomagnetic Devices For Non-Boolean Computing, Md Ahsanul Abeed

Theses and Dissertations

Nanomagnetic devices have been projected as an alternative to transistor-based switching devices due to their non-volatility and potentially superior energy-efficiency. The energy efficiency is enhanced by the use of straintronics which involves the application of a voltage to a piezoelectric layer to generate a strain which is ultimately transferred to an elastically coupled magnetostrictive nanomaget, causing magnetization rotation. The low energy dissipation and non-volatility characteristics make straintronic nanomagnets very attractive for both Boolean and non-Boolean computing applications. There was relatively little research on straintronic switching in devices built with real nanomagnets that invariably have defects and imperfections, or their adaptation …


Magnetic Nanoparticles For Hyperthermia For Cancer Treatment, Bianca Paola Meneses Brassea Jan 2019

Magnetic Nanoparticles For Hyperthermia For Cancer Treatment, Bianca Paola Meneses Brassea

Open Access Theses & Dissertations

Fe3O4 and NixCu4-x magnetic nanoparticles were synthesized using supercritical conditions of liquids and wet chemistry, respectively. Characterization methods (VSM, SEM, TEM, and magnetic hyperthermia) yielded results that prove feasibility for magnetic hyperthermia for cancer treatment.


Investigation Of Optical Second Harmonic Generation From Si (100) With Process Tailored Surface & Embedded Ag Nanostructures For Advanced Si Nonlinear Nanophotonics, Gourav Bhowmik Jan 2019

Investigation Of Optical Second Harmonic Generation From Si (100) With Process Tailored Surface & Embedded Ag Nanostructures For Advanced Si Nonlinear Nanophotonics, Gourav Bhowmik

Legacy Theses & Dissertations (2009 - 2024)

The challenge of current microelectronic architecture in transmission bandwidth and power consumption can be potentially solved by using silicon photonics technologies that are compatible with modern CMOS fabrication. One of the critical active photonic devices for Si photonics is a Si based optical modulator. Most of the reported silicon modulators rely on the free carrier plasma dispersion effect. In those cases, a weak change of the refractive index obtained by carrier accumulation, injection or depletion is utilized in a Mach-Zehnder interferometer or a microring resonator to achieve intensity modulation, rendering them difficult for chip-level implementation due to a large footprint …


Exploring Gated Nanoelectronic Devices Fabricated From 1d And 2d Materials, Prathamesh A. Dhakras Jan 2019

Exploring Gated Nanoelectronic Devices Fabricated From 1d And 2d Materials, Prathamesh A. Dhakras

Legacy Theses & Dissertations (2009 - 2024)

One and two dimensional materials are being extensively researched toward potential application as ultra-thin body channel materials. The difficulty of implementing physical doping methods in these materials has necessitated various alternative doping schemes, the most promising of which is the electrostatic gating technique due to its reconfigurability. This dissertation explores the different fundamental devices that can be fabricated and characterized by taking advantage of the electrostatic gating of individual single-walled carbon nanotubes (SWNTs), dense SWNT networks and exfoliated 2D tungsten diselenide (WSe2) flakes.


Electron Transport In One And Two Dimensional Materials, Samuel William Lagasse Jan 2019

Electron Transport In One And Two Dimensional Materials, Samuel William Lagasse

Legacy Theses & Dissertations (2009 - 2024)

This dissertation presents theoretical and experimental studies in carbon nanotubes (CNTs), graphene, and van der Waals heterostructures. The first half of the dissertation focuses on cutting edge tight-binding-based quantum transport models which are used to study proton irradiation-induced single-event effects in carbon nanotubes [1], total ionizing dose effects in graphene [2], quantum hall effect in graded graphene p-n junctions [3], and ballistic electron focusing in graphene p-n junctions [4]. In each study, tight-binding models are developed, with heavy emphasis on tying to experimental data. Once benchmarked against experiment, properties of each system which are difficult to access in the laboratory, …


Magnetotransport In Zrte5 Crystals, Maksim Andreevich Sultanov Jan 2019

Magnetotransport In Zrte5 Crystals, Maksim Andreevich Sultanov

Graduate Research Theses & Dissertations

ZrTe5 is a topological material that is predicted to have a strain or temperature induced phase transition from a topological insulator state into a Weyl/Dirac semimetal state. In this study I find that there is insufficient evidence to support the claims for the existence of such a phase transition. I performed magnetoresistivity measurements using a Quantum Design Physical Properties Measurement System (PPMS) to measure the transverse and longitudinal resistivities at various temperatures and different strengths and orientations of the magnetic field. The measurement results were analyzed using OriginPro to determine the carrier mobility and density and to determine the temperature …