Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Physics

Electromagnetic Analysis Of Bidirectional Reflectance From Roughened Surfaces And Applications To Surface Shape Recovery, Julian Antolin Camarena Nov 2019

Electromagnetic Analysis Of Bidirectional Reflectance From Roughened Surfaces And Applications To Surface Shape Recovery, Julian Antolin Camarena

Physics & Astronomy ETDs

Scattering from randomly rough surfaces is a well-established sub area of electrodynamics. There remains much to be done since each surface and optical processes that may occur in within the scattering medium, and countless other scenarios, is different. There are also illumination models that describe lighting in a scene on the macroscopic scale where geometrical optics can be considered adequate. Of particular interest for us is the intersection of the physical scattering theories and the illumination models. We present two contributions: 1) A minimum of two independent images are needed since any opaque surface can be uniquely specified in terms …


A Rotating Aperture Mask For Small Telescopes, Edward L. Foley Nov 2019

A Rotating Aperture Mask For Small Telescopes, Edward L. Foley

Master's Theses

Observing the dynamic interaction between stars and their close stellar neighbors is key to establishing the stars’ orbits, masses, and other properties. Our ability to visually discriminate nearby stars is limited by the power of our telescopes, posing a challenge to astronomers at small observatories that contribute to binary star surveys. Masks placed at the telescope aperture promise to augment the resolving power of telescopes of all sizes, but many of these masks must be manually and repetitively reoriented about the optical axis to achieve their full benefits. This paper introduces a design concept for a mask rotation mechanism that …


Measuring Length Of Electron Bunches With Optics In Lcls-Ii, Nathan Ahn, Alan Fisher Sep 2019

Measuring Length Of Electron Bunches With Optics In Lcls-Ii, Nathan Ahn, Alan Fisher

STAR Program Research Presentations

Since the launch of the LINAC Coherent Light Source (LCLS) in 2009, there have been over 1,000 publications enabling pioneering research across multiple fields. Advances include: harnessing the sun’s light, revealing life’s secrets and aiding drug development, developing future electronics, designing new materials and exploring fusion, customizing chemical reactions, and many more. These discoveries gathered worldwide attention, and now work has begun on a new revolutionary tool, LCLS-II. The LCLS-II will pulse at a million times a second, compared to the 120 pulses from the LCLS. Within the LCLS-II, there are two chicanes, serpentine curves. As the electron beam passes …


Studying Near-Critical And Super-Critical Fluids In Reduced Gravity, Christian Hawkins, Ana Oprisan, Carole Lecoutre-Chabot, Yves Garrabos, Daniel Beysens Aug 2019

Studying Near-Critical And Super-Critical Fluids In Reduced Gravity, Christian Hawkins, Ana Oprisan, Carole Lecoutre-Chabot, Yves Garrabos, Daniel Beysens

Journal of the South Carolina Academy of Science

Critical and supercritical fluids have a variety of applications, from use as machine lubricants in high pressure or high temperature environments to the manufacturing of materials such as aerogel. The optical properties of fluids undergo rapid changes near the critical point resulting in a rapid increase in turbidity known as critical opalescence. These optical changes can be used to probe the universality of critical behavior. As a fluid approaches the critical point, the compressibility rapidly increases. In a gravitational field, this increase in compressibility leads to near-critical fluids stratifying by phase and density, making it difficult to observe the optical …


Tailored Frequency Comb Structures And Their Sensing Applications, James Hendrie Aug 2019

Tailored Frequency Comb Structures And Their Sensing Applications, James Hendrie

Optical Science and Engineering ETDs

The focus of this dissertation is the development and investigation of nested cavity mode-locked lasers and their resultant tailored frequency combs. A nested cavity is made up of two cavities, known as parents. One parent is a larger, active, 100MHz Ti:Saph oscillator and the other is a smaller, passive, 7GHz Fabry-Perot Etalon (FPE). Unlike standard frequency combs that are continuous, a tailored comb’s teeth are distributed in equally spaced groups where the center of each group corresponds to the resonance of the FPE and the side bands are determined by the resonances of the Ti:Saph. This unique coupling of the …


Excitable Interplay Between Lasing Quantum Dot States, Michael Dillane, I. Dubinkin, N. Fedorov, T. Erneux, David Goulding, B. Kelleher, E.A. Viktorov Jul 2019

Excitable Interplay Between Lasing Quantum Dot States, Michael Dillane, I. Dubinkin, N. Fedorov, T. Erneux, David Goulding, B. Kelleher, E.A. Viktorov

Cappa Publications

The optically injected semiconductor laser system has proven to be an excellent source of experimental nonlinear dynamics, particularly regarding the generation of excitable pulses. Typically for low-injection strengths, these pulses are the result of a small above-threshold perturbation of a stable steady state, the underlying physics is well described by the Adler phase equation, and each laser intensity pulse is accompanied by a 2π phase rotation. In this article, we show how, with a dual-state quantum dot laser, a variation of type I excitability is possible that cannot be described by the Adler model. The laser is operated so that …


Monolayer Doping Of Silicon-Germanium Alloys: A Balancing Act Between Phosphorus Incorporation And Strain Relaxation, Noel Kennedy, Ray Duffy, Gioele Mirabelli, Luke Eaton, Nikolay Petkov, Justin D. Holmes, Chris Hatem, Lee Walsh, Brenda Long Jul 2019

Monolayer Doping Of Silicon-Germanium Alloys: A Balancing Act Between Phosphorus Incorporation And Strain Relaxation, Noel Kennedy, Ray Duffy, Gioele Mirabelli, Luke Eaton, Nikolay Petkov, Justin D. Holmes, Chris Hatem, Lee Walsh, Brenda Long

Cappa Publications

This paper presents the application of monolayer doping (MLD) to silicon-germanium (SiGe). This study was carried out for phosphorus dopants on wafers of epitaxially grown thin films of strained SiGe on silicon with varying concentrations of Ge (18%, 30%, and 60%). The challenge presented here is achieving dopant incorporation while minimizing strain relaxation. The impact of high temperature annealing on the formation of defects due to strain relaxation of these layers was qualitatively monitored by cross-sectional transmission electron microscopy and atomic force microscopy prior to choosing an anneal temperature for the MLD drive-in. Though the bulk SiGe wafers provided are …


Slow Light With Interleaved P-N Junction To Enhance Performance Of Integrated Mach-Zehnder Silicon Modulators, Marco Passoni, Dario Gerace, Liam O'Faolain, Lucio Claudio Andreani May 2019

Slow Light With Interleaved P-N Junction To Enhance Performance Of Integrated Mach-Zehnder Silicon Modulators, Marco Passoni, Dario Gerace, Liam O'Faolain, Lucio Claudio Andreani

Cappa Publications

Slow light is a very important concept in nanophotonics, especially in the context of photonic crystals. In this work, we apply our previous design of band-edge slow light in silicon waveguide gratings [M. Passoni et al, Opt. Express 26, 8470 (2018)] to Mach-Zehnder modulators based on the plasma dispersion effect. The key idea is to employ an interleaved p-n junction with the same periodicity as the grating, in order to achieve optimal matching between the electromagnetic field profile and the depletion regions of the p-n junction. The resulting modulation efficiency is strongly improved as compared to common modulators based on …


Generation And Use Of Femtosecond, Gigawatt, Near Infrared Laser Pulses From An Amplified, Mode-Locked, Ti:Sapphire Laser, David Anthony Valdés May 2019

Generation And Use Of Femtosecond, Gigawatt, Near Infrared Laser Pulses From An Amplified, Mode-Locked, Ti:Sapphire Laser, David Anthony Valdés

Optical Science and Engineering ETDs

This work modeled the early to middle successes achieved in the field of ultrafast, high peak power optics, beginning with the work of Nobel Prize winners Donna Strickland and Gérard Mourou in 1985. In our work, 100 fs light pulses of around 800 nm were generated by a Ti:Sapphire oscillator, then amplified to approximately 30 GW peak power using a chirped pulse amplification system that included regenerative and multi-pass amplifiers. As a verification of our pulses having high peak powers and ultrashort durations, they were then used to strike water, glass, and a Kerr Cell. Supercontinuum generation was observed as …


Construction Of A Hyperspectral Camera Using Off-The-Shelf Parts And 3d-Printed Parts, Connor Heo May 2019

Construction Of A Hyperspectral Camera Using Off-The-Shelf Parts And 3d-Printed Parts, Connor Heo

Mechanical Engineering Undergraduate Honors Theses

The Arkansas Center for Space and Planetary Sciences (ACSPS) is working together with the Mechanical Engineering Department to build a modifiable camera with 3D-printed parts and off-the-shelf parts (sourced from Edmund Optics and Amazon). The design is to be readily changeable, primarily with the 3D printed parts, as to accommodate new ideas and functionalities in the future. Ultimately, the camera should be relatively cheap while maintaining functionality for proposed use cases. Earlier versions of the design will be tested extensively and rapidly updated in the ACSPS labs with benchtop testing. This will involve subjects with both visible and infrared emissions, …


Single Metalens For Generating Polarization And Phase Singularities Leading To A Reverse Flow Of Energy, Victor V. Kotlyar, Anton G. Nalimov, Sergey S. Stafeev, Liam O'Faolain Apr 2019

Single Metalens For Generating Polarization And Phase Singularities Leading To A Reverse Flow Of Energy, Victor V. Kotlyar, Anton G. Nalimov, Sergey S. Stafeev, Liam O'Faolain

Cappa Publications

Using Jones matrices and vectors, we show that a metasurface-based optical element composed of a set of subwavelength diffraction gratings, whose anisotropic transmittance is described by a matrix of polarization rotation by angle m, where is the polar angle, generate an mth order azimuthally or radially polarized beam, when illuminated by linearly polarized light, or an optical vortex with topological charge m, when illuminated by circularly polarized light. Such a converter performs a spin–orbit transformation, acting similarly to a liquid-crystal half-wave plate. Using the FDTD-aided numerical simulation, we show that uniform linearly or circularly polarized light passing through the …


Subwavelength Grating-Based Spiral Metalens For Tight Focusing Of Laser Light, Victor V. Kotlyar, Sergey S. Stafeev, Anton G. Nalimov, Liam O'Faolain Apr 2019

Subwavelength Grating-Based Spiral Metalens For Tight Focusing Of Laser Light, Victor V. Kotlyar, Sergey S. Stafeev, Anton G. Nalimov, Liam O'Faolain

Cappa Publications

In this paper, we investigate a 16-sector spiral metalens fabricated on a thin film (130 nm) of amorphous silicon, consisting of a set of subwavelength binary diffractive gratings and with a numerical aperture that is close to unity. The metalens converts linearly polarized incident light into an azimuthally polarized optical vortex and focuses it at a distance approximately equal to the wavelength of the incident light, k ¼ 633 nm. Using a scanning near-field optical microscope, it is shown experimentally that the metalens forms an elliptical focal spot with diameters smaller than the diffraction limit: FWHMx ¼ 0.32k (60.03k) and …


Optical Vortex And Poincaré Analysis For Biophysical Dynamics, Anindya Majumdar Jan 2019

Optical Vortex And Poincaré Analysis For Biophysical Dynamics, Anindya Majumdar

Dissertations, Master's Theses and Master's Reports

Coherent light - such as that from a laser - on interaction with biological tissues, undergoes scattering. This scattered light undergoes interference and the resultant field has randomly added phases and amplitudes. This random interference pattern is known as speckles, and has been the subject of multiple applications, including imaging techniques. These speckle fields inherently contain optical vortices, or phase singularities. These are locations where the intensity (or amplitude) of the interference pattern is zero, and the phase is undefined.

In the research presented in this dissertation, dynamic speckle patterns were obtained through computer simulations as well as laboratory setups …


Spectroscopy Of Neon For The Advanced Undergraduate Laboratory, H. C. Busch, M. B. Cooper, C. I. Sukenik Jan 2019

Spectroscopy Of Neon For The Advanced Undergraduate Laboratory, H. C. Busch, M. B. Cooper, C. I. Sukenik

Physics Faculty Publications

We describe a spectroscopy experiment, suitable for upper-division laboratory courses, that investigates saturated absorption spectroscopy and polarization spectroscopy in a neon discharge. Both experiments use nearly identical components, allowing students to explore both techniques in a single apparatus. Furthermore, because the wavelength of the laser is in the visible part of the spectrum (640 nm), the experiment is well-suited for students with limited experience in optical alignment. The labs nicely complement a course in atomic or plasma physics, provide students with the opportunity to gain important technical skills in the area of optics and lasers, and can provide an introduction …


Opticks:, Fyodor Andreievich Shiryaev Jan 2019

Opticks:, Fyodor Andreievich Shiryaev

Senior Projects Spring 2019

Senior Project submitted to The Division of Arts of Bard College.