Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 31 - 60 of 639

Full-Text Articles in Cosmology, Relativity, and Gravity

Challenging Predictions Of Inflationary Models With Cmb Data, Richik Bhattacharya, Atanu Debnath, Esha Sajjanhar, Shravani Sardeshpande, Pablo Tenorio Hernández, José Ricardo Torres Heredia Jul 2022

Challenging Predictions Of Inflationary Models With Cmb Data, Richik Bhattacharya, Atanu Debnath, Esha Sajjanhar, Shravani Sardeshpande, Pablo Tenorio Hernández, José Ricardo Torres Heredia

2022 REYES Proceedings

Cosmic inflation offers the best known explanations for many of the observed features of the Universe, such as its flatness. An imprint of the qualities of this mechanism is left in the cosmic microwave background (CMB), which can be instrumental to confirm inflation. Unfortunately, there is a plethora of inflationary models, which are a priori in the same footing. It is conceivable that contrasting the predictions of the various models with the measured values of the parameters of CMB data and other cosmological observables shall allow one to single out the successful theory of inflation. In this work we provide …


Calibration Of The Lux-Zeplin Dual-Phase Xenon Time Projection Chamber With Internally Injected Radioisotopes, Christopher D. Nedlik Jun 2022

Calibration Of The Lux-Zeplin Dual-Phase Xenon Time Projection Chamber With Internally Injected Radioisotopes, Christopher D. Nedlik

Doctoral Dissertations

Self-shielding in ton-scale liquid xenon (LXe) detectors presents a unique challenge for calibrating detector response to interactions in the detector's innermost volume. Calibration radioisotopes must be injected directly into the LXe to reach the central volume, where they must either decay away with a short half life or be purified out. We present an overview of, and results from, the prototype source injection system (SIS) developed at the University of Massachusetts Amherst for the LUX-ZEPLIN experiment (LZ). The SIS is designed to refine techniques for the injection and removal of precise activities of various calibration radioisotopes that are useful in …


From Equal-Mass To Extreme-Mass-Ratio Binary Inspirals: Simulation Tools For Next Generation Gravitational Wave Detectors, Samuel Douglas Cupp Jun 2022

From Equal-Mass To Extreme-Mass-Ratio Binary Inspirals: Simulation Tools For Next Generation Gravitational Wave Detectors, Samuel Douglas Cupp

LSU Doctoral Dissertations

Current numerical codes can successfully evolve similar-mass binary black holes systems, and these numerical waveforms contributed to the success of the LIGO Collaboration's detection of gravitational waves. LIGO requires high resolution numerical waveforms for detection and parameter estimation of the source. Great effort was expended over several decades to produce the numerical methods used today. However, future detectors will require further improvements to numerical techniques to take full advantage of their detection capabilities. For example, the Laser Interferometer Space Antenna (LISA) will require higher resolution simulations of similar-mass-ratio systems than LIGO. LISA will also be able to detect extreme-mass-ratio inspiral …


Introduction To Classical Field Theory, Charles G. Torre Jun 2022

Introduction To Classical Field Theory, Charles G. Torre

All Complete Monographs

This is an introduction to classical field theory. Topics treated include: Klein-Gordon field, electromagnetic field, scalar electrodynamics, Dirac field, Yang-Mills field, gravitational field, Noether theorems relating symmetries and conservation laws, spontaneous symmetry breaking, Lagrangian and Hamiltonian formalisms.


Utilizing Post-Newtonian Expansion To Determine Parameters Of Compact Binary Black Hole Mergers, Jarrod E. Rudis May 2022

Utilizing Post-Newtonian Expansion To Determine Parameters Of Compact Binary Black Hole Mergers, Jarrod E. Rudis

Honors College

The process of determining parameters of black hole mergers requires complicated formulae like the Einstein Field Equations (EFEs) that can only be solved numerically with the help of supercomputers. This paper sought to explore an alternative method to prediction of parameters through the use of 1st order Post-Newtonian Expansion (PNE), which is a way of approximating solutions to the EFEs. Two binary- black hole mergers, GW170814 and GW170809 were analyzed with the use of 1st order PNE to obtain the chirp mass and radiated energy parameters. These parameters were then compared with the parameters obtained using numerical solutions to the …


Spin-Orbit Gravitational Locking - An Effective Potential Approach, Christopher Clouse, Andrea Ferroglia, Miguel C. N. Fiolhais Mar 2022

Spin-Orbit Gravitational Locking - An Effective Potential Approach, Christopher Clouse, Andrea Ferroglia, Miguel C. N. Fiolhais

Publications and Research

The objective of this paper is to study the tidally locked 3:2 spin–orbit resonance of Mercury around the Sun. In order to achieve this goal, the effective potential energy that determines the spinning motion of an ellipsoidal planet around its axis is considered. By studying the rotational potential energy of an ellipsoidal planet orbiting a spherical star on an elliptic orbit with fixed eccentricity and semi-major axis, it is shown that the system presents an infinite number of metastable equilibrium configurations. These states correspond to local minima of the rotational potential energy averaged over an orbit, where the ratio between …


The World As We Know It: Maps And Atlases From Special Collections, Archives And Special Collections, Luke Meagher Feb 2022

The World As We Know It: Maps And Atlases From Special Collections, Archives And Special Collections, Luke Meagher

Library Exhibits

Selections of maps and atlases from Sandor Teszler Library’s Special Collections are presented in this exhibit to show how, over time, cartographers have represented the world as we know it.


Venus Mountain Waves In The Upper Atmosphere Simulated By A Time-Invariant Linear Full-Wave Spectral Model, Michael P. Hickey, Richard L. Walterscheid, Thomas Navarro, Gerald Schubert Feb 2022

Venus Mountain Waves In The Upper Atmosphere Simulated By A Time-Invariant Linear Full-Wave Spectral Model, Michael P. Hickey, Richard L. Walterscheid, Thomas Navarro, Gerald Schubert

Publications

A 2-D spectral full-wave model is described that simulates the generation and propagation of mountain waves over idealized topography in Venus' atmosphere. Modeled temperature perturbations are compared with the Akatsuki observations. Lower atmosphere eddy diffusivity and stability play a major role in the upward propagation of gravity waves from their mountain sources. Two local times (LT) are considered. For LT = 11 h the waves are blocked by a critical level near 100 km altitude, while for LT = 16 h the waves propagate into the thermosphere. As a result of the small scale height in the Venus thermosphere, for …


The Meaning Of Dark, Light And Shadows: Inferences In Art, Materiality And Cultural Practices, Frank Prendergast Jan 2022

The Meaning Of Dark, Light And Shadows: Inferences In Art, Materiality And Cultural Practices, Frank Prendergast

Book/Book Chapter

Our visual awareness relies on light acting on the eye to perceive materiality and colour. Medieval thought wrestled to articulate and comprehend its nature. The notebooks of Leonardo Da Vinci, for example, included his descriptions to define light and make comparisons so as to differentiate between light and shadow. His focus was on the illumination of surfaces from the perspective of a painter, seeing shadows as ‘the diminution of light by the intervention of an opaque body’ and ‘the counterpart of luminous rays’. In his mind, a shadow ‘stood between light and darkness’, with darkness being ‘the absence of light’. …


Information Entropic Content Of Astrophysical Spectra: Applications To Cosmology And Astrobiology, Sara Vannah Jan 2022

Information Entropic Content Of Astrophysical Spectra: Applications To Cosmology And Astrobiology, Sara Vannah

Dartmouth College Ph.D Dissertations

Astrophysics faces two critical challenges: the difficulty of observing very distant targets and the difficulty of interpreting science in diverse and often extreme environments that have not been replicated on Earth. In this thesis, we discuss two types of spectra — one from early universe cosmology and one from astrobiology — where improvements in telescope technology are just ushering in a wave of precise observations, addressing the first challenge. This accelerates the need for a solution to the second challenge. Traditional methods for analyzing these two spectra rely heavily on unsettled science, biasing results to match the input assumptions. In …


Trapped Surfaces, Topology Of Black Holes, And The Positive Mass Theorem, Lan-Hsuan Huang, Dan A. Lee Jan 2022

Trapped Surfaces, Topology Of Black Holes, And The Positive Mass Theorem, Lan-Hsuan Huang, Dan A. Lee

Publications and Research

No abstract provided.


Understanding The Physics Of Galaxy Clusters Out To Their Virial Radii And Beyond, Arnab Sarkar Jan 2022

Understanding The Physics Of Galaxy Clusters Out To Their Virial Radii And Beyond, Arnab Sarkar

Theses and Dissertations--Physics and Astronomy

In the hierarchical structure formation model, galaxy clusters grow and evolve via mergers and accretion from the surrounding cosmic web, leaving distinctive marks in the gas properties, metallicity, and dynamical state at the outskirts of clusters, which needs to be probed to better understand the growth of a cluster. I probed the gas properties of four nearby galaxy groups MKW4, Antlia, RXJ1159, and ESO3060170 out to their virial radii using deep Suzaku and mostly snapshot Chandra observations. I found the gas entropy profiles of MKW4 follow a power-law at its outskirts - as expected from purely gravitational structure formation model. …


Constraining The Star Formation Histories Of Galaxies In The Swift/Uvot + Manga (Swim) Value-Added Catalog, Nikhil Ajgaonkar Jan 2022

Constraining The Star Formation Histories Of Galaxies In The Swift/Uvot + Manga (Swim) Value-Added Catalog, Nikhil Ajgaonkar

Theses and Dissertations--Physics and Astronomy

Although our understanding about galaxy evolution has improved in the past few
decades, we still do not understand how galaxies suddenly stop forming stars and move towards a quiescent phase. In order to do that, we must derive the Star Formation Histories (SFHs) of galaxies, that trace the change in Star Formation (SF) inside the galaxy over the cosmic timescale. This is achieved by using a set of spatially resolved near-ultraviolet (NUV) and optical spectroscopic images of the galaxies. We generate the Swift/UVOT + MaNGA value added catalog (SwiM VAC; Molina et al., 2020b) which comprises 150 galaxies having a …


A New Non-Inheriting Homogeneous Solution Of The Einstein-Maxwell Equations With Cosmological Term, Charles G. Torre Jan 2022

A New Non-Inheriting Homogeneous Solution Of The Einstein-Maxwell Equations With Cosmological Term, Charles G. Torre

Research Vignettes

No abstract provided.


Accretion Onto A Black Hole At The Center Of A Neutron Star: Nuclear Equations Of State, Sophia Christina Schnauck Jan 2022

Accretion Onto A Black Hole At The Center Of A Neutron Star: Nuclear Equations Of State, Sophia Christina Schnauck

Honors Projects

A recent re-examination of Bondi accretion (see Richards, Baumgarte and Shapiro (2021)) revealed that, for stiff equations of state (EOSs), steady-state accretion can only occur for accretion rates exceeding a certain minimum. To date, this result has been explored only for gamma-law equations of state. Instead, we consider accretion onto a small black hole residing at the center of a neutron star governed by a more realistic nuclear EOS. We generalize the relativistic Bondi solution for such EOSs, approximated by piecewise polytropes, and thereby obtain analytical expressions for the accretion rates which were reflected in our numerical simulations. After taking …


Studies Of Electromagnetic Counterparts To Gravitational-Wave Sources And The Nonlinear Gravitational-Wave Memory Effect, Ashok Choudhary Jan 2022

Studies Of Electromagnetic Counterparts To Gravitational-Wave Sources And The Nonlinear Gravitational-Wave Memory Effect, Ashok Choudhary

Graduate Theses, Dissertations, and Problem Reports

In this dissertation, theoretical/computational results are presented from the investigations of three different topics within the general research areas of gravitational wave astrophysics and electromagnetic counterparts. First, general relativistic force-free electromagnetic theory and its application to black hole magnetospheres are discussed. In this connection, simulations of a binary black hole merger are examined using the open-source software, GiRaFFE, which is used to model black holes’ magnetospheres and to study supermassive black-hole binary mergers in an external magnetic field. In the simulations, a helical magnetic field structure around each black hole is observed. Electromagnetic energy flux is observed during the inspiral …


Bayesian Methods For Multi-Messenger Analysis Of Supermassive Black Hole Binaries: Pulsars And Quasars And Gravitational Waves, Oh My!, Caitlin A. Witt Jan 2022

Bayesian Methods For Multi-Messenger Analysis Of Supermassive Black Hole Binaries: Pulsars And Quasars And Gravitational Waves, Oh My!, Caitlin A. Witt

Graduate Theses, Dissertations, and Problem Reports

Supermassive black hole binaries (SMBHBs) can lurk, often unseen, in the centers of post-merger galaxies, and pulsar timing arrays (PTAs) are rapidly approaching the sensitivities required to detect nanohertz gravitational waves (GWs) from these giant pairs. Independently, numerous electromagnetic surveys are seeking evidence of these dynamic duos’ effects on their host galaxies by searching for periodicities in time-domain observations. Combining these two methods to use multi-messenger techniques allows us to learn more about these binaries than using one messenger alone. In this thesis, we have created Bayesian methods to search for SMBHBs using electromagnetic observations of quasars and through GW …


The Differentialgeometry Package, Ian M. Anderson, Charles G. Torre Jan 2022

The Differentialgeometry Package, Ian M. Anderson, Charles G. Torre

Downloads

This is the entire DifferentialGeometry package, a zip file (DifferentialGeometry.zip) containing (1) a Maple Library file, DifferentialGeometryUSU.mla, (2) a Maple help file DifferentialGeometry.help, (3) a Maple Library file, DGApplicatons.mla. This is the latest version of the DifferentialGeometry software; it supersedes what is released with Maple.

Installation instructions


A New Non-Inheriting Homogeneous Solution Of The Einstein-Maxwell Equations With Cosmological Term, Ian M. Anderson, Charles G. Torre Jan 2022

A New Non-Inheriting Homogeneous Solution Of The Einstein-Maxwell Equations With Cosmological Term, Ian M. Anderson, Charles G. Torre

Publications

We find a new homogeneous solution to the Einstein-Maxwell equations with a cos- mological term. The spacetime manifold is R × S3. The spacetime metric admits a simply transitive isometry group G = R × SU(2) and is Petrov type I. The spacetime is geodesically complete and globally hyperbolic. The electromagnetic field is non- null and non-inheriting: it is only invariant with respect to the SU(2) subgroup and is time-dependent in a stationary reference frame.


What's New In Differentialgeometry Release Dg2022, Ian M. Anderson, Charles G. Torre Jan 2022

What's New In Differentialgeometry Release Dg2022, Ian M. Anderson, Charles G. Torre

Tutorials on... in 1 hour or less

This Maple worksheet demonstrates the salient new features and functionalities of the 2022 release of the DifferentialGeometry software package.


Perturbative Unitarity And Nec Violation In Genesis Cosmology, Yong Cai, Ji Xu, Shuai Zhao, Siyi Zhou Jan 2022

Perturbative Unitarity And Nec Violation In Genesis Cosmology, Yong Cai, Ji Xu, Shuai Zhao, Siyi Zhou

Physics Faculty Publications

Explorations of the violation of null energy condition (NEC) in cosmology could enrich our understanding of the very early universe and the related gravity theories. Although a fully stable NEC violation can be realized in the “beyond Horndeski” theory, it remains an open question whether a violation of the NEC is allowed by some fundamental properties of UV-complete theories or the consistency requirements of effective field theory (EFT). We investigate the tree-level perturbative unitarity for stable NEC violations in the contexts of both Galileon and “beyond Horndeski” genesis cosmology, in which the universe is asymptotically Minkowskian in the past. We …


𝒯, 𝒫-Odd Effects In The Luoh⁺ Cation, Daniel E. Maison, Leonid V. Skripnikov, Gleb Penyazkov, Matt Grau, Alexander N. Petrov Jan 2022

𝒯, 𝒫-Odd Effects In The Luoh⁺ Cation, Daniel E. Maison, Leonid V. Skripnikov, Gleb Penyazkov, Matt Grau, Alexander N. Petrov

Physics Faculty Publications

The LuOH+ cation is a promising system to search for manifestations of time reversal and spatial parity violation effects. Such effects in LuOH+ induced by the electron electric dipole moment eEDM and the scalar-pseudoscalar interaction of the nucleus with electrons, characterized by ks constant, in LuOH+ are studied. The enhancement factors, polarization in the external electric field, hyperfine interaction, and rovibrational structure are calculated. The study is required for the experiment preparation and extraction of the eEDM and ks values from experimental data.


First Steps In The Small-Scale Structure Formation In The Universe: The Emergence Of Galaxies, Da Bi Jan 2022

First Steps In The Small-Scale Structure Formation In The Universe: The Emergence Of Galaxies, Da Bi

Theses and Dissertations--Physics and Astronomy

Galactic morphology in the contemporary universe results from the convergence of a long list of physical processes, not all of them yet fully understood and quantified. The universe exhibits a hierarchical structure: galaxies grow being immersed in dark matter (DM) halos, which in turn are fed by diffuse and filamentary accretion. I use a suite of very high-resolution zoom-in cosmological simulations of galaxies in order to study the assembly of galaxies at high redshifts, z ≥ 2, to quantify the role of environment and of the parent DM halos in this procss. My models have been chosen to lie within …


Superluminal Propagation On A Moving Braneworld, Brian Greene, Daniel Kabat, Janna Levin, Arjun S. Menon Jan 2022

Superluminal Propagation On A Moving Braneworld, Brian Greene, Daniel Kabat, Janna Levin, Arjun S. Menon

Publications and Research

We consider a braneworld scenario in the simplest setting, M4 × S1, with a four-dimensional (4D) Minkowski metric induced on the brane, and establish the possibility of superluminal propagation. If the brane is at rest, the 4D Lorentz symmetry of the brane is exact, but if the brane is in motion, it is broken globally by the compactification. By measuring bulk fields, an observer on the brane sees a slice through a higher-dimensional field profile, which carries an imprint of the extra dimensions even when the brane is at rest. If the brane is in motion, we …


Toward Deep Learning Emulators For Modeling The Large-Scale Structure Of The Universe, Neerav Kaushal Jan 2022

Toward Deep Learning Emulators For Modeling The Large-Scale Structure Of The Universe, Neerav Kaushal

Dissertations, Master's Theses and Master's Reports

Multi-billion dollar cosmological surveys are being conducted almost every decade in today’s era of precision cosmology. These surveys scan vast swaths of sky and generate tons of observational data. In order to extract meaningful information from this data and test these observations against theory, rigorous theoretical predictions are needed. In the absence of an analytic method, cosmological simulations become the most widely used tool to provide these predictions in order to test against the observations. They can be used to study covariance matrices, generate mock galaxy catalogs and provide ready-to-use snapshots for detailed redshift analyses. But cosmological simulations of matter …


Newgrange Skyscape In Stellarium, Frank Prendergast Dec 2021

Newgrange Skyscape In Stellarium, Frank Prendergast

Articles

Newgrange Skyscape in Stellarium is a new customised landscape planetarium model giving the user the unique ability to interrogate the dynamic sky above the Boyne Valley on any date of interest during the hours of daylight or darkness. Archaeological, astronomical and topographical points of interest are labelled in the model and visible even during the hours of darkness. These are summarily described in a short gazetteer appended at the end of the instruction document to encourage further exploration of the wonderful heritage found in the Boyne Valley and beyond.

Watch on Youtube: https://www.youtube.com/watch?app=desktop&v=aGPsVGBXkY4

Watch on Vimeo: https://vimeo.com/493351576


Dark Matter Detection Materials, James E. Harrison Iv Aug 2021

Dark Matter Detection Materials, James E. Harrison Iv

PANDION: The Osprey Journal of Research and Ideas

The purpose of this paper is to review the different methods and materials used in the detection of dark matter. Special attention is given to materials in the solid state, but other materials are briefly mentioned for the sake of completeness. After a review, we discuss the viability of each material as a detector, and determine what advantages each material has, and what method of detection works best for each material. We conclude by discussing the potential outcomes of a null detection.


Impact Of Weak Gravitational Force In Sri Lanka, Periyandy Thunendran Aug 2021

Impact Of Weak Gravitational Force In Sri Lanka, Periyandy Thunendran

English Language Institute

Gravity studies explain about the sub surface features and shape of the earth, and show gravitational force is weak in the Sri Lanka region, which has positive and negative impacts. This poster argues further studies on gravity are needed to revise the global gravitational model of the region.


Population Properties Of Compact Objects From The Second Ligo-Virgo Gravitational-Wave Transient Catalog, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, A. Adams, C. Adams, R. X. Adhikari, V. B. Adya, C. Affeldt, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. D. Aguiar, L. Aiello, A. Ain, P. Ajith, G. Allen, A. Allocca, Tiffany Z. Summerscales May 2021

Population Properties Of Compact Objects From The Second Ligo-Virgo Gravitational-Wave Transient Catalog, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, A. Adams, C. Adams, R. X. Adhikari, V. B. Adya, C. Affeldt, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. D. Aguiar, L. Aiello, A. Ain, P. Ajith, G. Allen, A. Allocca, Tiffany Z. Summerscales

Faculty Publications

We report on the population of 47 compact binary mergers detected with a false-alarm rate of (BBH) population not discernible until now. First, the primary mass spectrum contains structure beyond a power law with a sharp high-mass cutoff; it is more consistent with a broken power law with a break at 39.7-+9.120.3 M? or a power law with a Gaussian feature peaking at 33.1-+5.64.0 M? (90% credible interval). While the primary mass distribution must extend to ~65 M? or beyond, only 2.9-+1.73.5% of systems have primary masses greater than 45 M?. Second, we find that a fraction of BBH systems …


Laplace's Equation In Fractional-Dimension Spaces, Kyle Schoener, Gabriele Varieschi May 2021

Laplace's Equation In Fractional-Dimension Spaces, Kyle Schoener, Gabriele Varieschi

Honors Thesis

The correct way to model gravity is a question in physics whose answer continues to elude our understanding. One major difficulty is the dark matter problem, which exists due to the mass discrepancy between predicted and measured values in our universe. One possible solution to this problem is Modified Newtonian Dynamics (MOND). MOND is an alternative gravity model that modifies Newtonian Dynamics with the hope to avoid the necessity of dark matter.

Dr. Varieschi has done work connecting MOND to Newtonian Fractional-Dimension Gravity—the application of fractional calculus and fractional mechanics to classical gravitation laws. In this formulation, we can consider …