Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Cosmology, Relativity, and Gravity

Broadband Measurement And Reduction Of Quantum Radiation Pressure Noise In The Audio Band, Jonathan Daniel Cripe Jun 2018

Broadband Measurement And Reduction Of Quantum Radiation Pressure Noise In The Audio Band, Jonathan Daniel Cripe

LSU Doctoral Dissertations

One hundred years after Albert Einstein predicted the existence of gravitational waves in his general theory of relativity, the Laser Interferometer Gravitational-Wave Observatory (LIGO) made the first direct detection of gravitational waves. Since the first detection of gravitational waves from a binary black hole merger, LIGO has gone on to detect gravitational waves from multiple binary black hole mergers, and more recently from a binary neutron star merger in collaboration with telescopes around the world. The detection of gravitational waves has opened a new window to the universe and has launched the era of gravitational wave astronomy.

With the first …


Gravitational Wave Astrophysics: Instrumentation, Detector Characterization, And A Search For Gravitational Signals From Gamma-Ray Bursts, Daniel Hoak Nov 2015

Gravitational Wave Astrophysics: Instrumentation, Detector Characterization, And A Search For Gravitational Signals From Gamma-Ray Bursts, Daniel Hoak

Doctoral Dissertations

In the coming years, the second generation of interferometric gravitational wave detectors are widely expected to observe the gravitational radiation emitted by compact, energetic events in the nearby universe. The field of gravitational wave astrophysics has grown into a large international endeavor with a global network of kilometer-scale observatories. The work presented in this thesis spans the field, from optical metrology, to instrument commissioning, to detector characterization and data analysis. The principal results are a method for the precise characterization of optical cavities, the commissioning of the advanced LIGO Output Mode Cleaner at the Hanford observatory, and a search for …


Laser Frequency Stabilization For Lisa, Andrew B. Parker, Andrew J. Sutton, Glenn De Vine Aug 2014

Laser Frequency Stabilization For Lisa, Andrew B. Parker, Andrew J. Sutton, Glenn De Vine

STAR Program Research Presentations

This research focuses on laser ranging developments for LISA (Laser Interferometer Space Antenna), a planned NASA-ESA gravitational wave detector in space. LISA will utilize precision laser interferometry to track the changes in separation between three satellites orbiting 5 million kilometers apart. Specifically, our goal is to investigate options for laser frequency stabilization. Previous research has shown that an optical cavity system can meet LISA's stability requirements, but these units are large and heavy, adding cost to the implementation. A heterodyne Mach-Zehnder interferometer could be integrated onto LISA’s existing optical bench, greatly reducing the weight, provided the interferometer meets the stability …


Basic Astronomy Labs, Terry L. Smith, Michael D. Reynolds, Jay S. Huebner Jul 2014

Basic Astronomy Labs, Terry L. Smith, Michael D. Reynolds, Jay S. Huebner

Jay S Huebner

Providing the tools and know-how to apply the principles of astronomy first-hand, these 43 laboratory exercises each contain an introduction that clearly shows budding astronomers why the particular topic of that lab is of interest and relevant to astronomy. About one-third of the exercises are devoted solely to observation, and no mathematics is required beyond simple high school algebra and trigonometry.Organizes exercises into six major topics—sky, optics and spectroscopy, celestial mechanics, solar system, stellar properties, and exploration and other topics—providing clear outlines of what is involved in the exercise, its purpose, and what procedures and apparatus are to be used. …


Basic Astronomy Labs, Terry L. Smith, Michael D. Reynolds, Jay S. Huebner Jan 1996

Basic Astronomy Labs, Terry L. Smith, Michael D. Reynolds, Jay S. Huebner

Physics Faculty Research and Scholarship

Providing the tools and know-how to apply the principles of astronomy first-hand, these 43 laboratory exercises each contain an introduction that clearly shows budding astronomers why the particular topic of that lab is of interest and relevant to astronomy. About one-third of the exercises are devoted solely to observation, and no mathematics is required beyond simple high school algebra and trigonometry.Organizes exercises into six major topics—sky, optics and spectroscopy, celestial mechanics, solar system, stellar properties, and exploration and other topics—providing clear outlines of what is involved in the exercise, its purpose, and what procedures and apparatus are to be used. …