Open Access. Powered by Scholars. Published by Universities.®

Relativity

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 26 of 26

Full-Text Articles in Cosmology, Relativity, and Gravity

Characterizing And Mitigating Transient Noise In Ligo Observatories For Gravitational Wave Detection, Jane Glanzer Mar 2024

Characterizing And Mitigating Transient Noise In Ligo Observatories For Gravitational Wave Detection, Jane Glanzer

LSU Doctoral Dissertations

The existence of gravitational waves is predicted by Albert Einstein's Theory of General Relativity. Commonly referred to as "ripples in spacetime", these waves are generated by some of the most violent and energetic processes in the universe. Despite their theoretical prediction over a century ago, it wasn't until 2015 that the Advanced LIGO (aLIGO) interferometers in Hanford, WA and Livingston, LA directly detected gravitational waves for the first time, confirming Einstein's theory and ushering in a new era of astrophysics.

Detecting gravitational waves requires incredible precision. Because of the extreme sensitivity required, it is possible for the gravitational wave data …


Cosmological Vector Fields And Constraining The Neutrino Masses, Avery J. Tishue Jun 2023

Cosmological Vector Fields And Constraining The Neutrino Masses, Avery J. Tishue

Dartmouth College Ph.D Dissertations

In this thesis I explore two main topics: the role and consequences of cosmological vector fields, and new ideas for constraining fundamental physics with state-of-the-art experiments. These topics are disparate in content and technique but unified in their attempt to leverage novel approaches to better understand longstanding questions in cosmology. These questions, such as ``What is causing the universe to accelerate today?'' and ``What are the neutrino masses?'', underpin the modern cosmological paradigm. They play a key role in our understanding of cosmic history, the formation of structure, and the fate of our universe. Answers to or hints about these …


A 3+1 Decomposition Of The Minimal Standard-Model Extension Gravitational Sector, Nils A. Nilsson, Kellie O'Neal-Ault, Quentin G. Bailey May 2019

A 3+1 Decomposition Of The Minimal Standard-Model Extension Gravitational Sector, Nils A. Nilsson, Kellie O'Neal-Ault, Quentin G. Bailey

Publications

The 3+1 (ADM) formulation of General Relativity is used in, for example, canonical quantum gravity and numerical relativity. Here we present a 3+1 decomposition of the minimal Standard-Model Extension gravity Lagrangian. By choosing the leaves of foliation to lie along a timelike vector field we write the theory in a form which will allow for comparison and matching to other gravity models.


Recent Developments In Spacetime-Symmetry Tests In Gravity, Q. G. Bailey May 2019

Recent Developments In Spacetime-Symmetry Tests In Gravity, Q. G. Bailey

Publications

Motivated by potentially detectable but minuscule signatures from Planckscale or other new physics, there has been a substantial increase in tests of spacetime symmetry in gravity in recent years. Some novel hypothetical effects that break local Lorentz symmetry and CPT symmetry in gravitational experiments as well as solar system and astrophysical observations have been studied in recent works. Much of this work uses the effective field theory framework, the Standard-Model Extension (SME), that includes gravitational couplings. In other cases, the parameters in specific hypothetical models of Lorentz violation in gravity have been tested.


Testing The Gravitational Weak Equivalence Principle In The Standard-Model Extension With Binary Pulsars, Lijing Shao, Quentin G. Bailey Apr 2019

Testing The Gravitational Weak Equivalence Principle In The Standard-Model Extension With Binary Pulsars, Lijing Shao, Quentin G. Bailey

Publications

The standard model extension provides a framework to systematically investigate possible violation of the Lorentz symmetry. Concerning gravity, the linearized version was extensively examined. We here cast the first set of experimental bounds on the nonlinear terms in the field equation from the anisotropic cubic curvature couplings. These terms introduce body-dependent accelerations for self-gravitating objects, thus violating the gravitational weak equivalence principle (GWEP). Novel phenomena, which are absent in the linearized gravity, remain experimentally unexplored. We constrain them with precise binary-orbit measurements from pulsar timing, wherein the high density and large compactness of neutron stars are crucial for the test. …


What Causes Black Holes To Spin?, Mac B. Selesnick Jan 2019

What Causes Black Holes To Spin?, Mac B. Selesnick

Senior Projects Spring 2019

Black holes are recently at the cutting edge of cosmological and astrophysical research. Both experiment and theory are leading to surprising conclusions on the physical properties of black holes and their affects on space and time. In this project, I set out to explore the origin and mechanics of a black hole's spin, that is, its internal angular momentum. What causes a black hole to spin in the first place is rich and nuanced. In order to make this project accessible and focused I explore the process of a minor merger, a collision between two black holes, one large and …


First Search For Nontensorial Gravitational Waves From Known Pulsars, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, B. Hughey, J. W. W. Pratt, E. Schmidt, S. G. Schwalbe, M. J. Szczepańczyk, M. Zanolin, Et Al. Jan 2018

First Search For Nontensorial Gravitational Waves From Known Pulsars, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, B. Hughey, J. W. W. Pratt, E. Schmidt, S. G. Schwalbe, M. J. Szczepańczyk, M. Zanolin, Et Al.

Publications

We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector, or tensor polarizations, and does not rely on any specific theory of gravity. After searching data from the first observation run of the advanced LIGO detectors for signals at twice the rotational frequency of 200 known pulsars, we find no evidence of gravitational waves of any polarization. We report the first upper …


Quantum Physics And Relativity In Lovecraft's Fiction, Garrison Mccammon Jul 2017

Quantum Physics And Relativity In Lovecraft's Fiction, Garrison Mccammon

English Summer Fellows

The early twentieth century brought about some of the best and most influential horror or weird tales ever written in the English speaking world. The most impressive and most lauded author of the group composed of such figures as Algernon Blackwood, M. R. James, Arthur Machen, Clark A. Smith, and Robert E. Howard was H. P. Lovecraft. Posthumously declared the literary successor to Edgar Allan Poe, Lovecraft’s fiction and tales of terror have cast such a huge shadow that every significant author in weird writing since his passing has claimed him as a literary heir. Lovecraft’s works were a landmark …


Series Solutions Of Polarized Gowdy Universes, Doniray Brusaferro Jan 2017

Series Solutions Of Polarized Gowdy Universes, Doniray Brusaferro

Theses and Dissertations

Einstein's field equations are a system of ten partial differential equations. For a special class of spacetimes known as Gowdy spacetimes, the number of equations is reduced due to additional structure of two dimensional isometry groups with mutually orthogonal Killing vectors. In this thesis, we focus on a particular model of Gowdy spacetimes known as the polarized T3 model, and provide an explicit solution to Einstein's equations.


Black Holes Modeled As Fluid Droplets On Membranes, Anthony Bardessono Jun 2016

Black Holes Modeled As Fluid Droplets On Membranes, Anthony Bardessono

Physics

No abstract provided.


Testing Lorentz Symmetry With Planetary Orbital Dynamics, A. Hees, Q. G. Bailey, C. Le Poncin-Lafitte, A. Bourgoin, A. Rivoldini, B. Lamine, F. Meynadier, C. Guerlin, P. Wolf Sep 2015

Testing Lorentz Symmetry With Planetary Orbital Dynamics, A. Hees, Q. G. Bailey, C. Le Poncin-Lafitte, A. Bourgoin, A. Rivoldini, B. Lamine, F. Meynadier, C. Guerlin, P. Wolf

Publications

Planetary ephemerides are a very powerful tool to constrain deviations from the theory of general relativity (GR) using orbital dynamics. The effective field theory framework called the Standard-Model Extension (SME) has been developed in order to systematically parametrize hypothetical violations of Lorentz symmetry (in the Standard Model and in the gravitational sector). In this communication, we use the latest determinations of the supplementary advances of the perihelia and of the nodes obtained by planetary ephemerides analysis to constrain SME coefficients from the pure gravity sector and also from gravity-matter couplings. Our results do not show any deviation from GR and …


Short-Range Gravity And Lorentz Violation, Quentin G. Bailey, V. Alan Kostelecký, Rui Xu Jan 2015

Short-Range Gravity And Lorentz Violation, Quentin G. Bailey, V. Alan Kostelecký, Rui Xu

Publications

Comparatively few searches have been performed for violations of local Lorentz invariance in the pure-gravity sector. We show that tests of short-range gravity are sensitive to a broad class of unconstrained and novel signals that depend on the experimental geometry and on sidereal time.


Shadows In Time: A Study Of Temporal Metaphysics Through Hard Science Fiction And Its Restrictions On The Past And Future, Lindsey E. Mitchell Aug 2013

Shadows In Time: A Study Of Temporal Metaphysics Through Hard Science Fiction And Its Restrictions On The Past And Future, Lindsey E. Mitchell

Oglethorpe Journal of Undergraduate Research

Through a series of essays, this body of work explores the varying theories concerning the nature of time and how each theory affects the possibility and outcome of time travel. Following these essays, a collection of short stories focuses on what the author considers the most probable theories concerning time and expands on how they might affect a time traveler's decisions and fate.


Field Localization And The Nambu-Jona-Lasinio Mass Generation Mechanism In An Alternative 5-Dimensional Brane Model, Preston Jones, Gerardo Muñoz, Douglas Singleton, Triyanta Jul 2013

Field Localization And The Nambu-Jona-Lasinio Mass Generation Mechanism In An Alternative 5-Dimensional Brane Model, Preston Jones, Gerardo Muñoz, Douglas Singleton, Triyanta

Publications

We consider a five-dimensional brane world model with a single brane which is distinct from the well known Randall-Sundrum model. We discuss the similarities and differences between our brane model and the Randall-Sundrum brane model. In particular we focus on the localization of five-dimensional fields with different spins—spin 0, spin 1 / 2 , and spin 1—to the brane, and a self-consistent mass-generation mechanism. We find that the brane model studied here has different (and in some cases superior) localization properties for fields/particles with different spins to the brane, as compared to the original five-dimensional brane models. In addition this …


Vacuum, Space-Time, Matter And The Models Of Smarandache Geometry, Florentin Smarandache, Hu Chang-Wei Jan 2012

Vacuum, Space-Time, Matter And The Models Of Smarandache Geometry, Florentin Smarandache, Hu Chang-Wei

Branch Mathematics and Statistics Faculty and Staff Publications

Many fundamental concepts in physics remain unsolved:  What is time? Is it pure relative?  What is the vacuum? Is it void space or special medium?  What is mass? Can it be created? I believe that physicists have not got definite answers for the above questions. Isaac Newton said: I was like a boy playing on the sea-shore, and diverting myself now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me. For instance, we still do not know what the clear definition of time …


Application Of Asymptotic Expansions For Maximum Likelihood Estimators' Errors To Gravitational Waves From Inspiraling Binary Systems: The Network Case, Salvatore Vitale, Michele Zanolin Nov 2011

Application Of Asymptotic Expansions For Maximum Likelihood Estimators' Errors To Gravitational Waves From Inspiraling Binary Systems: The Network Case, Salvatore Vitale, Michele Zanolin

Publications

This paper describes the most accurate analytical frequentist assessment to date of the uncertainties in the estimation of physical parameters from gravitational waves generated by nonspinning binary systems and Earth-based networks of laser interferometers. The paper quantifies how the accuracy in estimating the intrinsic parameters mostly depends on the network signal to noise ratio (SNR), but the resolution in the direction of arrival also strongly depends on the network geometry. We compare results for 6 different existing and possible global networks and two different choices of the parameter space. We show how the fraction of the sky where the one …


Lorentz Violation And Gravity, Quentin G. Bailey Apr 2010

Lorentz Violation And Gravity, Quentin G. Bailey

Publications

In the last decade, a variety of high-precision experiments have searched for miniscule violations of Lorentz symmetry. These searches are largely motivated by the possibility of uncovering experimental signatures from a fundamental unified theory. Experimental results are reported in the framework called the Standard-Model Extension (SME), which describes general Lorentz violation for each particle species in terms of its coefficients for Lorentz violation. Recently, the role of gravitational experiments in probing the SME has been explored in the literature. In this talk, I will summarize theoretical and experimental aspects of these works. I will also discuss recent lunar laser ranging …


The Equivalence Principle, Uniformly Accelerated Reference Frames, And The Uniform Gravitational Field, Gerardo Muñoz, Preston Jones Mar 2010

The Equivalence Principle, Uniformly Accelerated Reference Frames, And The Uniform Gravitational Field, Gerardo Muñoz, Preston Jones

Publications

The relation between uniformly accelerated reference frames in flat spacetime and the uniform gravitational field is examined in a relativistic context. It is shown that contrary to previous statements, equivalence does not break down in this context. No restrictions to Newtonian approximations or small enclosures are necessary.


Constraining The Spin Of The Black Hole In Fairall 9 With Suzaku, S. Schmoll, J. M. Miller, M. Volonteri, E. Cackett, C. S. Reynolds, A. C. Fabian, L. W. Brenneman, G. Miniutti, L. C. Gallo Oct 2009

Constraining The Spin Of The Black Hole In Fairall 9 With Suzaku, S. Schmoll, J. M. Miller, M. Volonteri, E. Cackett, C. S. Reynolds, A. C. Fabian, L. W. Brenneman, G. Miniutti, L. C. Gallo

Physics and Astronomy Faculty Research Publications

We report on the results of spectral fits made to data obtained from a 168 ks Suzaku observation of the Seyfert 1 galaxy Fairall 9. The source is clearly detected out to 30 keV. The observed spectrum is fairly simple; it is well described by a power law with soft excess and disk reflection. A broad iron line is detected, and easily separated from distinct narrow components owing to the resolution of the CCDs in the X-ray Imaging Spectrometer (XIS). The broad line is revealed to be asymmetric, consistent with a disk origin. We fit the XIS and Hard X-ray …


A Deep Xmm-Newton Observation Of The Quasar 3c 287, G. Salvesen, J. M. Miller, E. Cackett, A. Siemiginowska Feb 2009

A Deep Xmm-Newton Observation Of The Quasar 3c 287, G. Salvesen, J. M. Miller, E. Cackett, A. Siemiginowska

Physics and Astronomy Faculty Research Publications

We report on an XMM-Newton observation of the z = 1.055 quasar and Gigahertz Peaked Spectrum (GPS) source 3C 287. Our 62.3 ks observation provides an exceptional X-ray view of a prominent member of this important subclass of active galactic nuclei (AGNs). The X-ray spectra of 3C 287 are consistent with a simple absorbed power law with a spectral index of Γ = 1.72 ± 0.02. Our fits imply a bolometric luminosity of L = 5.8 ± 0.2 × 1045 erg s-1 over the 0.3-10.0 keV band; this gives a mass lower limit of M BH min >= …


Initial Measurements Of Black Hole Spin In Gx 339-4 From Suzaku Spectroscopy, J. M. Miller, C. S. Reynolds, A. C. Fabian, E. M. Cackett, G. Miniutti, J. Raymond, D. Steeghs, R. Reis, J. Homan Jun 2008

Initial Measurements Of Black Hole Spin In Gx 339-4 From Suzaku Spectroscopy, J. M. Miller, C. S. Reynolds, A. C. Fabian, E. M. Cackett, G. Miniutti, J. Raymond, D. Steeghs, R. Reis, J. Homan

Physics and Astronomy Faculty Research Publications

We report on a deep Suzaku observation of the stellar-mass black hole GX 339-4 in outburst. A clear, strong, relativistically shaped iron emission line from the inner accretion disk is observed. The broadband disk reflection spectrum revealed is one of the most sensitive yet obtained from an accreting black hole. We fit the Suzaku spectra with a physically motivated disk reflection model, blurred by a new relativistic line function in which the black hole spin parameter is a variable. This procedure yielded a black hole spin parameter of a=0.89+/-0.04. Joint modeling of these Suzaku spectra and prior XMM-Newton spectra obtained …


Bianchi Identities And Weak Gravitational Lensing, Brian Keith Jan 2007

Bianchi Identities And Weak Gravitational Lensing, Brian Keith

Undergraduate Review

No abstract provided.


Neutrosophic Methods In General Relativity, Florentin Smarandache, Dmitri Rabounski, Larissa Borissova Dec 2005

Neutrosophic Methods In General Relativity, Florentin Smarandache, Dmitri Rabounski, Larissa Borissova

Branch Mathematics and Statistics Faculty and Staff Publications

In this work the authors apply concepts of Neutrosophic Logic to the General Theory of Relativity to obtain a generalisation of Einstein’s fourdimensional pseudo-Riemannian differentiable manifold in terms of Smarandache Geometry (Smarandache manifolds), by which new classes of relativistic particles and non-quantum teleportation are developed. Fundamental features of Neutrosophic Logic are its denial of the Law of Excluded Middle, and open (or estimated) levels of truth, falsity and indeterminancy. Both Neutrosophic Logic and Smarandache Geometry were invented some years ago by one of the authors (F. Smarandache). The application of these purely mathematical theories to General Relativity reveals hitherto unknown …


Today's Take On Einstein’S Relativity: Proceedings Of The Conference Of 18 Feb 2005, Florentin Smarandache, Homer B. Tilton Jan 2005

Today's Take On Einstein’S Relativity: Proceedings Of The Conference Of 18 Feb 2005, Florentin Smarandache, Homer B. Tilton

Branch Mathematics and Statistics Faculty and Staff Publications

Non Sequiturs in Relativity Four in number at this point Dr. Smith of "Lost in Space" had a knack of easing out of binds that he'd gotten himself into. Dr. Einstein was a little like that. Einstein originally declared that the distortions of special relativity reflect real changes to the objects being remotely observed, then reconsidered. The first non sequitur is quoted here from Sachs:[1] In a lecture that Einstein gave to the Prussian Academy of Sciences in 1921, he said the following: "Geometry predicates nothing about relations of real things, but only geometry together with the purport of physical …


Riemann Tensor Of The Ambient Universe, The Dilaton, And Newton’S Constant, Rossen Ivanov, Emil Prodanov Jan 2004

Riemann Tensor Of The Ambient Universe, The Dilaton, And Newton’S Constant, Rossen Ivanov, Emil Prodanov

Articles

We investigate a four-dimensional world, embedded into a five-dimensional spacetime, and find the five-dimensional Riemann tensor via generalisation of the Gauss (--Codacci) equations. We then derive the generalised equations of the four-dimensional world and also show that the square of the dilaton field is equal to the Newton's constant. We find plausable constant and non-constant solutions for the dilaton. Comment: 5 pages, revtex


Shock Study In Fully Relativistic Isothermal Flows. Ii, Ruixin Yang, Menas Kafatos Jan 1995

Shock Study In Fully Relativistic Isothermal Flows. Ii, Ruixin Yang, Menas Kafatos

Mathematics, Physics, and Computer Science Faculty Articles and Research

The isothermal shocks and their stabilities in fully relativistic accretion wedge flows onto black holes are studied. The jump condition across the shock is modified by the relativistic effects when the sound speed is comparable to the speed of light. With a new kind of instability analysis, it is found that only one of the two possible shocks is stable. The results are applied to the QPO behavior in galactic black hole candidates such as Cygnus X-1.