Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Cosmology, Relativity, and Gravity

A Cyclic Universe Approach To Fine Tuning, Stephon Alexander, Sam Cormack, Marcelo Gleiser Jun 2016

A Cyclic Universe Approach To Fine Tuning, Stephon Alexander, Sam Cormack, Marcelo Gleiser

Dartmouth Scholarship

We present a closed bouncing universe model where the value of coupling constants is set by the dynamics of a ghost-like dilatonic scalar field. We show that adding a periodic potential for the scalar field leads to a cyclic Friedmann universe where the values of the couplings vary randomly from one cycle to the next. While the shuffling of values for the couplings happens during the bounce, within each cycle their time-dependence remains safely within present observational bounds for physically-motivated values of the model parameters. Our model presents an alternative to solutions of the fine tuning problem based on string …


Stability Bounds On Compact Astrophysical Objects From Information-Entropic Measure, Marcelo Gleiser, Nan Jiang Aug 2015

Stability Bounds On Compact Astrophysical Objects From Information-Entropic Measure, Marcelo Gleiser, Nan Jiang

Dartmouth Scholarship

We obtain bounds on the stability of various self-gravitating astrophysical objects using a new measure of shape complexity known as configurational entropy. We apply the method to Newtonian polytropes, neutron stars with an Oppenheimer-Volkoff equation of state, and to self-gravitating configurations of complex scalar field (boson stars) with different self couplings, showing that the critical stability region of these stellar configurations obtained from traditional perturbation methods correlates well with critical points of the configurational entropy with accuracy of a few percent or better.


Fermi-Bounce Cosmology And The Fermion Curvaton Mechanism, Stephon Alexander, Yi-Fu Cai, Antonino Marcianò May 2015

Fermi-Bounce Cosmology And The Fermion Curvaton Mechanism, Stephon Alexander, Yi-Fu Cai, Antonino Marcianò

Dartmouth Scholarship

A nonsingular bouncing cosmology can be achieved by introducing a fermion field with BCS condensation occurring at high energy scales. In this paper we are able to dilute the anisotropic stress near the bounce by means of releasing the gap energy density near the phase transition between the radiation and condensate states. In order to explain the nearly scale-invariant CMB spectrum, another fermion field is required. We investigate one possible curvaton mechanism by involving one another fermion field without condensation where the mass is lighter than the background field. We show that, by virtue of the fermion curvaton mechanism, our …


Search For Higgs Shifts In White Dwarfs, Roberto Onofrio, Gary A. Wegner Aug 2014

Search For Higgs Shifts In White Dwarfs, Roberto Onofrio, Gary A. Wegner

Dartmouth Scholarship

We report on a search for differential shifts between electronic and vibronic transitions in carbon-rich white dwarfs BPM 27606 and Procyon B. The absence of differential shifts within the spectral resolution and taking into account systematic effects such as space motion and pressure shifts allows us to set the first upper bound of astrophysical origin on the coupling between the Higgs field and the Kreschmann curvature invariant. Our analysis provides the basis for a more general methodology to derive bounds to the coupling of long-range scalar fields to curvature invariants in an astrophysical setting complementary to the ones available from …


Transition To Order After Hilltop Inflation, Marcelo Gleiser, Noah Graham Mar 2014

Transition To Order After Hilltop Inflation, Marcelo Gleiser, Noah Graham

Dartmouth Scholarship

We investigate the rich nonlinear dynamics during the end of hilltop inflation by numerically solving the coupled Klein-Gordon-Friedmann equations in an expanding universe. In particular, we search for coherent, nonperturbative configurations that may emerge due to the combination of nontrivial couplings between the fields and resonant effects from the cosmological expansion. We couple a massless field to the inflaton to investigate its effect on the existence and stability of coherent configurations and the effective equation of state at reheating. For parameters consistent with data from the Planck and WMAP satellites, and for a wide range of couplings between the inflaton …


Brief History Of Curvature, Robert R. Caldwell, Steven S. Gubser Mar 2013

Brief History Of Curvature, Robert R. Caldwell, Steven S. Gubser

Dartmouth Scholarship

The trace of the stress-energy tensor of the cosmological fluid, proportional to the Ricci scalar curvature in general relativity, is determined on cosmic scales for times ranging from the inflationary epoch to the present day in the expanding Universe. The post-inflationary epoch and the thermal history of the relativistic fluid, in particular the QCD transition from asymptotic freedom to confinement and the electroweak phase transition, leave significant imprints on the scalar curvature. These imprints can be of either sign and are orders of magnitude larger than the values that would be obtained by naively extrapolating the pressureless matter of the …


Information Content Of Spontaneous Symmetry Breaking, Marcelo Gleiser, Nikitas Stamatopoulos Aug 2012

Information Content Of Spontaneous Symmetry Breaking, Marcelo Gleiser, Nikitas Stamatopoulos

Dartmouth Scholarship

We propose a measure of order in the context of nonequilibrium field theory and argue that this measure, which we call relative configurational entropy (RCE), may be used to quantify the emergence of coherent low-entropy configurations, such as time-dependent or time-independent topological and nontopological spatially extended structures. As an illustration, we investigate the nonequilibrium dynamics of spontaneous symmetry breaking in three spatial dimensions. In particular, we focus on a model where a real scalar field, prepared initially in a symmetric thermal state, is quenched to a broken-symmetric state. For a certain range of initial temperatures, spatially localized, long-lived structures known …


Casimir Forces And Non-Newtonian Gravitation, Roberto Onofrio Oct 2006

Casimir Forces And Non-Newtonian Gravitation, Roberto Onofrio

Dartmouth Scholarship

The search for non-relativistic deviations from Newtonian gravitation can lead to new phenomena signalling the unification of gravity with the other fundamental interactions. Various recent theoretical frameworks indicate a possible window for non-Newtonian forces with gravitational coupling strength in the micrometre range. The major expected background in the same range is attributable to the Casimir force or variants of it if dielectric materials, rather than conducting ones, are considered. Here we review the measurements of the Casimir force performed so far in the micrometre range and how they determine constraints on non-Newtonian gravitation, also discussing the dominant sources of false …


Black Hole Attractor Varieties And Complex Multiplication, Monika Lynker, Vipul Periwal, Rolf Schimmrigk Jun 2003

Black Hole Attractor Varieties And Complex Multiplication, Monika Lynker, Vipul Periwal, Rolf Schimmrigk

Faculty and Research Publications

Black holes in string theory compactified on Calabi-Yau varieties a priori might be expected to have moduli dependent features. For example the entropy of the black hole might be expected to depend on the complex structure of the manifold. This would be inconsistent with known properties of black holes. Supersymmetric black holes appear to evade this inconsistency by having moduli fields that flow to fixed points in the moduli space that depend only on the charges of the black hole. Moore observed in the case of compactifications with elliptic curve factors that these fixed points are arithmetic, corresponding to curves …


Fine-Tuning Solution For Hybrid Inflation In Dissipative Chaotic Dynamics, Rudnei O. Ramos Nov 2001

Fine-Tuning Solution For Hybrid Inflation In Dissipative Chaotic Dynamics, Rudnei O. Ramos

Dartmouth Scholarship

We study the presence of chaotic behavior in phase space in the preinflationary stage of hybrid inflation models. This is closely related to the problem of initial conditions associated with these inflationary types of model. We then show how an expected dissipative dynamics of fields just before the onset of inflation can solve or ease considerably the problem of initial conditions, driving the system naturally toward inflation. The chaotic behavior of the corresponding dynamical system is studied by computation of the fractal dimension of the boundary in phase space separating inflationary from noninflationary trajectories. The fractal dimension for this boundary …


Shortcuts In The Fifth Dimension, Robert Caldwell, David Langlois Jul 2001

Shortcuts In The Fifth Dimension, Robert Caldwell, David Langlois

Dartmouth Scholarship

If our Universe is a three-brane embedded in a five-dimensional anti-de Sitter spacetime, in which matter is confined to the brane and gravity inhabits an infinite bulk space, then the causal propagation of luminous and gravitational signals is in general different. A gravitational signal traveling between two points on the brane can take a “shortcut” through the bulk, and appear quicker than a photon traveling between the same two points along a geodesic on the brane. Similarly, in a given time interval, a gravitational signal can propagate farther than a luminous signal. We quantify this effect, and analyze the impact …


Affinity For Scalar Fields To Dissipate, Arjun Berera, Rudnei O. Ramos Apr 2001

Affinity For Scalar Fields To Dissipate, Arjun Berera, Rudnei O. Ramos

Dartmouth Scholarship

The zero-temperature effective equation of motion is derived for a scalar field interacting with other fields. For a broad range of cases, involving interaction with as few as one or two fields, dissipative regimes are found for the scalar field system. The zero-temperature limit constitutes a baseline effect that will be prevalent in any general statistical state. Thus, the results found here provide strong evidence that dissipation is the norm not the exception for an interacting scalar field system. For application to inflationary cosmology, this provides convincing evidence that warm inflation could be a natural dynamics once proper treatment of …


Gravitational Waves From Collapsing Vacuum Domains, Marcelo Gleiser, Ronald Roberts Dec 1998

Gravitational Waves From Collapsing Vacuum Domains, Marcelo Gleiser, Ronald Roberts

Dartmouth Scholarship

The breaking of an approximate discrete symmetry, the final stages of a first order phase transition, or a postinflationary biased probability distribution for scalar fields are possible cosmological scenarios characterized by the presence of unstable domain wall networks. Combining analytical and numerical techniques, we show that the nonspherical collapse of these domains can be a powerful source of gravitational waves. We compute their contribution to the stochastic background of gravitational radiation and explore their observability by present and future gravitational wave detectors.