Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Cosmology, Relativity, and Gravity

Surpassing The Standard Quantum Limit Using An Optical Spring, Torrey Cullen Jul 2022

Surpassing The Standard Quantum Limit Using An Optical Spring, Torrey Cullen

LSU Doctoral Dissertations

In 1916, Albert Einstein predicted the existence of gravitational waves based on his new theory of general relativity. He predicted an accelerating mass with a non-zero quadrupole moment would emit energy in the form of gravitational waves. Often referred to as ripples in space-time, gravitational waves are extremely small by the time reach Earth, potentially having traveled hundreds of megaparsecs. It is common for these ripples in space-time to stretch and squeeze matter 1000 times smaller than the width of a proton.
Laser interferometer observatories were first built in the 1990s in the US and Europe, and as sensitivity improvements …


From Equal-Mass To Extreme-Mass-Ratio Binary Inspirals: Simulation Tools For Next Generation Gravitational Wave Detectors, Samuel Douglas Cupp Jun 2022

From Equal-Mass To Extreme-Mass-Ratio Binary Inspirals: Simulation Tools For Next Generation Gravitational Wave Detectors, Samuel Douglas Cupp

LSU Doctoral Dissertations

Current numerical codes can successfully evolve similar-mass binary black holes systems, and these numerical waveforms contributed to the success of the LIGO Collaboration's detection of gravitational waves. LIGO requires high resolution numerical waveforms for detection and parameter estimation of the source. Great effort was expended over several decades to produce the numerical methods used today. However, future detectors will require further improvements to numerical techniques to take full advantage of their detection capabilities. For example, the Laser Interferometer Space Antenna (LISA) will require higher resolution simulations of similar-mass-ratio systems than LIGO. LISA will also be able to detect extreme-mass-ratio inspiral …


Measurements And Mitigation Of Scattered Light Noise In Ligo, Corey Daniel Austin Nov 2020

Measurements And Mitigation Of Scattered Light Noise In Ligo, Corey Daniel Austin

LSU Doctoral Dissertations

The Advanced LIGO (aLIGO) detectors use 1064 nm lasers to measure the tiny fluctuations in spacetime that occur when gravitational waves pass through the earth. LIGO makes use of advanced coating methods and materials to limit the amount of light that scatters from the main beam, but some amount of light does scatter. This stray light can interact with surfaces inside the interferometer that are not seismically isolated and then recombine with the main beam, introducing excess noise into the gravitational wave channel. This thesis reviews the methods for modeling scattered light with ray tracing software and analytical models, for …


Calibration Transients In Ligo Detectors, Thomas Daniel Abbott Jan 2020

Calibration Transients In Ligo Detectors, Thomas Daniel Abbott

LSU Doctoral Dissertations

This dissertation describes a novel method of analyzing fluctuations in the time-dependent calibration models of the LIGO interferometers to estimate their effect on strain reconstruction for gravitational-wave detections. The time-dependence of the calibration model of each detector is tracked with a set of parameters which are continuously measured while the interferometers are operating. These parameters track slow variations in the sensing function of the detectors as well as the actuators that hold the detectors in an operational state. The time-dependent parameter data during the second observation run (O2 [November 30, 2016 16:00 UTC to August 25, 2017 22:00:00 UTC]) and …


Broadband Measurement And Reduction Of Quantum Radiation Pressure Noise In The Audio Band, Jonathan Daniel Cripe Jun 2018

Broadband Measurement And Reduction Of Quantum Radiation Pressure Noise In The Audio Band, Jonathan Daniel Cripe

LSU Doctoral Dissertations

One hundred years after Albert Einstein predicted the existence of gravitational waves in his general theory of relativity, the Laser Interferometer Gravitational-Wave Observatory (LIGO) made the first direct detection of gravitational waves. Since the first detection of gravitational waves from a binary black hole merger, LIGO has gone on to detect gravitational waves from multiple binary black hole mergers, and more recently from a binary neutron star merger in collaboration with telescopes around the world. The detection of gravitational waves has opened a new window to the universe and has launched the era of gravitational wave astronomy.

With the first …