Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Cosmology, Relativity, and Gravity

Calibration Of The Lux-Zeplin Dual-Phase Xenon Time Projection Chamber With Internally Injected Radioisotopes, Christopher D. Nedlik Jun 2022

Calibration Of The Lux-Zeplin Dual-Phase Xenon Time Projection Chamber With Internally Injected Radioisotopes, Christopher D. Nedlik

Doctoral Dissertations

Self-shielding in ton-scale liquid xenon (LXe) detectors presents a unique challenge for calibrating detector response to interactions in the detector's innermost volume. Calibration radioisotopes must be injected directly into the LXe to reach the central volume, where they must either decay away with a short half life or be purified out. We present an overview of, and results from, the prototype source injection system (SIS) developed at the University of Massachusetts Amherst for the LUX-ZEPLIN experiment (LZ). The SIS is designed to refine techniques for the injection and removal of precise activities of various calibration radioisotopes that are useful in …


Magnetic Structure And Radiative Captures Of Few-Nucleon Systems: Status And Prospects, Laura Elisa Marcucci, Rocco Schiavilla, Alex Gnech, Michele Viviani Jan 2020

Magnetic Structure And Radiative Captures Of Few-Nucleon Systems: Status And Prospects, Laura Elisa Marcucci, Rocco Schiavilla, Alex Gnech, Michele Viviani

Physics Faculty Publications

We review the main ingredients for an ab-initio study of few-nucleon reactions of astrophysical interest within the chiral effective field theory approach, with particular attention to radiative captures relevant for Big Bang Nucleosynthesis and stellar evolution. We conclude with an outlook for ongoing and future work.


Determination Of Multi-Messenger Signals From Matter Outflows Of Merger Systems, Ronny Nguyen Jan 2019

Determination Of Multi-Messenger Signals From Matter Outflows Of Merger Systems, Ronny Nguyen

Honors Theses and Capstones

In 2017, LIGO detected gravitational waves from GW170817. This presented for the first time, gravitational waves originating from a neutron star - neutron star merger. Studies of neutron star mergers are significant because the multi-messenger signals in the form of gravitational waves and electromagnetic waves can inform us on the nuclear physics of neutron stars and the creation of heavy elements in the universe. Matter is ejected in the merging process and forms the outflow which provides a neutron-rich environment for rapid neutron capture (r-process) to occur leading to the nucleosynthesis of heavy elements. What we detect on Earth are …


Alpha Radiation Studies And Related Backgrounds In The Darkside-50 Detector, Alissa Monte Oct 2018

Alpha Radiation Studies And Related Backgrounds In The Darkside-50 Detector, Alissa Monte

Doctoral Dissertations

DarkSide-50 is the current phase of the DarkSide direct dark matter search program, operating underground at the Laboratori Nazionali del Gran Sasso in Italy. The detector is a dual-phase argon Time Projection Chamber (TPC), designed for direct detection of Weakly Interacting Massive Particles (WIMPs), and housed within a veto system of liquid scintillator and water Cherenkov detectors. Since switching to a target of low radioactivity argon extracted from underground sources in April 2015, the background is no longer dominated by naturally occurring 39Ar. However, alpha backgrounds from radon and its daughters remain, both from the liquid argon bulk and internal …


An Analysis Of Frenkel Defects And Backgrounds Modeling For Supercdms Dark Matter Searches, Matthew Stein May 2018

An Analysis Of Frenkel Defects And Backgrounds Modeling For Supercdms Dark Matter Searches, Matthew Stein

Physics Theses and Dissertations

Years of astrophysical observations suggest that dark matter comprises more than ~80 % of all matter in the universe. Particle physics theories favor a weakly-interacting particle that could be directly detected in terrestrial experiments. The Super Cryogenic Dark Matter Search (SuperCDMS) Collaboration operates world-leading experiments to directly detect dark matter interacting with ordinary matter. The SuperCDMS Soudan experiment searched for weakly interacting massive particles (WIMPs) via their elastic-scattering interactions with nuclei in low-temperature germanium detectors.

During the operation of the SuperCDMS Soudan experiment, 210Pb sources were installed to study background rejection of the Ge detectors. Data from these sources …


Lorentz-Symmetry Test At Planck-Scale Suppression With Nucleons In A Spin-Polarized 133 Cs Cold Atom Clock, H. Pihan-Le Bars, C. Guerlin, R.-D. Lasseri, J.-P. Ebran, Q. G. Bailey, S. Bize, E. Khan, P. Wolf Apr 2017

Lorentz-Symmetry Test At Planck-Scale Suppression With Nucleons In A Spin-Polarized 133 Cs Cold Atom Clock, H. Pihan-Le Bars, C. Guerlin, R.-D. Lasseri, J.-P. Ebran, Q. G. Bailey, S. Bize, E. Khan, P. Wolf

Publications

The authors introduce an improved model that links the frequency of the 133 Cs hyperfine Zeeman transitions.


Characterizing New Calibration Sources In Liquid Xenon Dark Matter Searches, Evan P. Bray, Rafael Lang, Sean Macmullin Aug 2014

Characterizing New Calibration Sources In Liquid Xenon Dark Matter Searches, Evan P. Bray, Rafael Lang, Sean Macmullin

The Summer Undergraduate Research Fellowship (SURF) Symposium

In order to use the XENON1T liquid xenon detector as a means for detecting dark matter, the response to nuclear and electronic recoils must be well calibrated. Electronic-recoil calibration of XENON1T will be done by using the noble gas radon-220 that emanates from a custom thorium-228 source to observe the electron recoils that its daughter elements induce in liquid xenon. A silicon PIN diode was constructed to ensure that the Th228 source does not contaminate the system with the long-lived isotopes Th228 (T1/2 of 1.9 y) or Radium-224 (T1/2 of 3.6 d). The PIN diode was fixed in a custom …


Integral Neutron Multiplicity Measurements From Cosmic Ray Interactions In Lead, Thomas E. Ward, Alexander A. Rimsky-Korsakov, Nikolai A. Kudryashev, Denis E. Beller Oct 2005

Integral Neutron Multiplicity Measurements From Cosmic Ray Interactions In Lead, Thomas E. Ward, Alexander A. Rimsky-Korsakov, Nikolai A. Kudryashev, Denis E. Beller

Transmutation Sciences Physics (TRP)

Sixty element 3He neutron multiplicity detector systems were designed, constructed and tested for use in cosmic ray experiments with a 30-cm cube lead target. A series of measurements were performed for the cosmic ray configuration at ground level (3 meters water equivalent, mwe), in the St. Petersburg metro tunnel (185 mwe), and in the Pyhäsalmi mine in Finland (583 and 1185 mwe). Anomalous coincidence events with charged cosmic ray particles at sea level produced events with 100-120 neutrons due possibly to the total disintegration of the Pb nucleus. These events were also detected at 185 mwe, but the particles …