Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Dissertations

Discipline
Institution
Keyword
Publication Year
Publication Type

Articles 1 - 30 of 236

Full-Text Articles in Mechanical Engineering

Depressurization Characteristics Of Steam-Based Reciprocating Vacuum Pump, Hongling Deng Dec 2023

Depressurization Characteristics Of Steam-Based Reciprocating Vacuum Pump, Hongling Deng

Dissertations

This dissertation introduces a novel vacuum technology that leverages low-pressure saturated steam and cooling-controlled condensation, offering an efficient way to utilize low-grade thermal energy sources like waste heat, steam, or solar energy. At the heart of this technology is a unique duo-chamber vacuum pump system, featuring a reciprocating piston and a heat-conductive wall, designed to generate a vacuum through steam-condensation and cooling processes.

The core of this research lies in developing and validating mechanistic models for the steam-condensation depressurization process, a complex phenomenon involving phase change and transport mechanisms. Prior to this work, these mechanisms were not sufficiently modeled or …


Aerodynamic & Aeroacoustic Performance Of Wind Turbine Blades Featuring Enhanced Flow-Control, Md Zishan Akhter Nov 2023

Aerodynamic & Aeroacoustic Performance Of Wind Turbine Blades Featuring Enhanced Flow-Control, Md Zishan Akhter

Dissertations

Wind energy, being one of the cleanest and most sustainable sources, has undergone remarkable growth in recent years due to advancements in aerodynamics and increased power output. The research community is actively pursuing the development of cutting-edge solutions to further optimize wind turbine technology, ensuring its maximum efficiency and revolutionizing the landscape of wind power.
This research aims to design and develop flow-control devices for wind turbine blades, employing both active and passive control mechanisms, namely morphing trailing-edge and slot-profile, respectively. The objective is to enhance wind turbine performance across a wide range of wind speeds. The morphing trailing-edge mechanism …


Quantifying Balance: Computational And Learning Frameworks For The Characterization Of Balance In Bipedal Systems, Kubra Akbas Aug 2023

Quantifying Balance: Computational And Learning Frameworks For The Characterization Of Balance In Bipedal Systems, Kubra Akbas

Dissertations

In clinical practice and general healthcare settings, the lack of reliable and objective balance and stability assessment metrics hinders the tracking of patient performance progression during rehabilitation; the assessment of bipedal balance plays a crucial role in understanding stability and falls in humans and other bipeds, while providing clinicians important information regarding rehabilitation outcomes. Bipedal balance has often been examined through kinematic or kinetic quantities, such as the Zero Moment Point and Center of Pressure; however, analyzing balance specifically through the body's Center of Mass (COM) state offers a holistic and easily comprehensible view of balance and stability.

Building upon …


Enabling Energy Efficiency In Connected And Automated Vehicles Through Predictive Control Techniques, Farhang Motallebiaraghi Jun 2023

Enabling Energy Efficiency In Connected And Automated Vehicles Through Predictive Control Techniques, Farhang Motallebiaraghi

Dissertations

The transportation sector is a significant contributor to global energy consumption and emissions, necessitating the development of sustainable transportation systems. In this regard, connected and automated vehicles (CAVs) have emerged as a potential solution to transform the transportation industry. By harnessing advanced mapping and location technologies, Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication, CAVs offer the promise of improving efficiency, reducing traffic congestion, and enhancing safety and comfort. However, the adoption of CAVs also brings about various challenges, including energy efficiency concerns that need to be addressed to fully realize their potential benefits. This dissertation investigates energy-efficient control techniques for transportation …


Improving Autonomous Vehicles Operational Performance Using Resilience Engineering, Johan Fanas Rojas Jun 2023

Improving Autonomous Vehicles Operational Performance Using Resilience Engineering, Johan Fanas Rojas

Dissertations

Autonomous vehicles are expected to revolutionize the transportation industry by providing a safer and more efficient means of transportation. However, as autonomous vehicles are deployed on public roads, they are exposed to significant risks, both in terms of safety and system performance. Recent studies have highlighted a range of errors and accidents associated with autonomous vehicles, underscoring the need for a systematic approach to improve their operational resilience. Resilience engineering, a discipline focused on designing and analyzing complex systems to better cope with unexpected events and disruptions, offers a promising framework for addressing these challenges. Despite the potential benefits of …


Importance Of Vegetation In Tsunami Mitigation: Evidence From Large Eddy Simulations With Fluid-Structure Interactions, Abhishek Mukherjee May 2023

Importance Of Vegetation In Tsunami Mitigation: Evidence From Large Eddy Simulations With Fluid-Structure Interactions, Abhishek Mukherjee

Dissertations

Communities worldwide are increasingly interested in nature-based solutions like coastal forests for the mitigation of coastal risks. Still, it remains unclear how much protective benefit vegetation provides, particularly in the limit of highly energetic flows after tsunami impact. The present thesis, using a three-dimensional incompressible computational fluid dynamics model with a fluid-structure interaction approach, aims to quantify how energy reflection and dissipation vary with different degrees of rigidity and vegetation density of a coastal forest.

In this study, tree trunks are represented as cylinders, and the elastic modulus of hardwood trees such as pine or oak is used to characterize …


Modeling Of Two-Dimensional And Biological Materials Towards Diverse Nano-Systems Applications, Jatin Kashyap Aug 2022

Modeling Of Two-Dimensional And Biological Materials Towards Diverse Nano-Systems Applications, Jatin Kashyap

Dissertations

This dissertation studies the demonstration of materials ranging from two-dimensional (2D) materials to small bio-molecules using various atomistic/molecular and sub-atomic particles (electron, hole, excitons) modeling techniques for multi-domain applications. Three categories of materials/systems are investigated as follows: 2D materials, biological materials, and complexes of 2D and biological materials.

The first problem demonstrates wrinkles' ubiquitous presence in two-dimensional materials significantly alters their properties. It is observed that water molecules, sourced from ambient humidity or transfer method, can get diffused in between Graphene and the substrate during the Graphene growth. The water diffusion causes/assists wrinkle formation in Graphene, which influences its properties. …


Additive Metal Deposition Feedback Optimization For The 3d Hybrid Metal Printer, Andrew James Wyman Aug 2022

Additive Metal Deposition Feedback Optimization For The 3d Hybrid Metal Printer, Andrew James Wyman

Dissertations

In the additive manufacturing realm, explicitly the direct energy deposition method, there continues to be numerous advancements along with advantages to control print quality of the component and the ability to apply the successful repetition of metallic layers consecutively. Metal additive printed components have the capacity to directly use the component for the desired application or intended purpose from which the three-dimensional model was created. In contrast, plastic printers that produce components that would not hold to the physical conditions required such as a metallic component could withstand.

Research exertions were focused on improving the present Western Michigan University patented …


Peridynamic Modeling Of Crack Propagation In Brittle Materials With Electromechanical Coupling, Semsi Coskun Aug 2022

Peridynamic Modeling Of Crack Propagation In Brittle Materials With Electromechanical Coupling, Semsi Coskun

Dissertations

The bond-based peridynamics (BB-PD) is a widely used peridynamic model in the literature. Despite Poisson's ratio restriction, it still serves as a powerful tool to solve challenging engineering problems with a relatively cheap computational cost. Consider the Poisson ratio of the material does not deviate from the ones that BB-PD can model. In that case, it becomes advantageous to use the BB-PD compared to other PD models in terms of computational cost and simplicity. However, the BB-PD suffers from the so-called surface or skin effect where the material response at boundaries becomes softer than the bulk material points. As a …


Model Predictive Controller Design For Internal Combustion Engines Based On The Second Law Of Thermodynamics, Muataz Abotabik Jun 2022

Model Predictive Controller Design For Internal Combustion Engines Based On The Second Law Of Thermodynamics, Muataz Abotabik

Dissertations

Energy resources depletion and worldwide strict emissions policies pose challenges that automotive manufacturers try to overcome through researching advanced powertrain technologies such as lean-burn gasoline, direct injection, homogeneous charge compression ignition engines, powertrain electrification, etc. Most of these developments have been focused on conventional internal combustion engines (ICE) emissions and performance enhancements. Most ICE control strategies are built based on the First Law of Thermodynamics (FLT) i.e., to deliver a specific load requirement, enhancing thermal efficiency, etc. The FLT doesn’t account for in-cylinder high temperature thermodynamics process irreversibilities that cause losses in the work potential; up to 25% of the …


Investigation Of Topological Phonons In Acoustic Metamaterials, Wenting Cheng May 2022

Investigation Of Topological Phonons In Acoustic Metamaterials, Wenting Cheng

Dissertations

Topological acoustics is a recent and intense area of research. It merges the knowledge of mathematical topology, condensed matter physics, and acoustics. At the same time, it has been pointed out that quasiperiodicity can greatly enhance the periodic table of topological systems. Because quasiperiodic patterns have an intrinsic global degree of freedom, which exists in the topological space called the hull of a pattern, where the shape traced in this topological space is called the phason. The hull augments the physical space, which opens a door to the physics of the integer quantum Hall effect (IQHE) in arbitrary dimensions. In …


Design And Control Of Next-Generation Uavs For Effectively Interacting With Environments, Caiwu Ding May 2022

Design And Control Of Next-Generation Uavs For Effectively Interacting With Environments, Caiwu Ding

Dissertations

In this dissertation, the design and control of a novel multirotor for aerial manipulation is studied, with the aim of endowing the aerial vehicle with more degrees of freedom of motion and stability when interacting with the environments. Firstly, it presents an energy-efficient adaptive robust tracking control method for a class of fully actuated, thrust vectoring unmanned aerial vehicles (UAVs) with parametric uncertainties including unknown moment of inertia, mass and center of mass, which would occur in aerial maneuvering and manipulation. The effectiveness of this method is demonstrated through simulation. Secondly, a humanoid robot arm is adopted to serve as …


Utilization Of Triply Periodic Minimal Surface (Tpms) Based Architectures Impregnated With Phase Change Material For Heat Transfer Applications, Zahid Ahmed Qureshi Feb 2022

Utilization Of Triply Periodic Minimal Surface (Tpms) Based Architectures Impregnated With Phase Change Material For Heat Transfer Applications, Zahid Ahmed Qureshi

Dissertations

This dissertation is concerned with the utilization of mathematically architected Triply Periodic Minimal Surface (TPMS) based lattices for Latent Heat Thermal Energy Storage (LHTES) systems. With the advent of Additive Manufacturing (AM), TPMS structures can be readily manufactured. The objective of this dissertation was to investigate the heat transfer performance of TPMS structures vis-à-vis conventional metal foams represented by Kelvin cells while both were impregnated with a Phase Change Material (PCM). Numerical simulations were performed under various boundary conditions to assess the performance. It was found that TPMS structures outperformed conventional metal foam. Moreover, the effects of boundary conditions (isothermal …


A Vacuum-Driven Distillation Technology Of Aqueous Solutions And Mixtures, Guo Guangyu Dec 2021

A Vacuum-Driven Distillation Technology Of Aqueous Solutions And Mixtures, Guo Guangyu

Dissertations

Distillation of aqueous solutions and aqueous mixtures has vast industrial applications, including desalination, wastewater treatment, and fruit juice concentration. Currently, two major distillation technologies are adopted in the industry, membrane separation and thermal distillation. However, both of them face certain inevitable drawbacks. Membrane separation has disadvantages as relying on high-grade energy, requiring membrane, fouling problem, narrow treatment range, limited scalability, and vibrating and noisy operating conditions. Traditional thermal distillation technologies can avoid above concerns but has other shortcomings, such as relatively low energy efficiency and yield rate, complicated and bulky system structure, and scaling problem.

This project proposes an innovative …


Electro-Chemo-Mechanics Of The Interfaces In 2d-3d Heterostructure Electrodes, Vidushi Sharma Dec 2021

Electro-Chemo-Mechanics Of The Interfaces In 2d-3d Heterostructure Electrodes, Vidushi Sharma

Dissertations

Unique heterostructure electrodes comprising two-dimensional (2D) materials and bulk three dimensional (3D) high-performance active electrodes are recently synthesized and experimentally tested for their electrochemical performance in metal-ion batteries. Such electrodes exhibit long cycle life while they also retain high-capacity inherent to the active electrode. The role of 2D material is to provide a supportive mesh that allows buffer space for volume expansions upon ion intercalation in the active material and establishes a continuous electronic contact. Therefore, the binding strength between both materials is crucial for the success of such electrodes. Furthermore, battery cycles may bring about phase transformations in the …


Experimental Investigation And Prediction Of Long-Term Effect Of Sustained Load And Harsh Environment On Fiber-Reinforced Polymer Composites, Amir Hussain Idrisi Jun 2021

Experimental Investigation And Prediction Of Long-Term Effect Of Sustained Load And Harsh Environment On Fiber-Reinforced Polymer Composites, Amir Hussain Idrisi

Dissertations

In this dissertation the durability of thermoset composites was investigated under sustained load. Two thermoset composites, E-glass/epoxy and E-glass/polyurethane were immersed in seawater under sustained load (10%, 15%, 20%, 25% of failure load) and varying temperature (23°C to 95°C) for the period of 15 months. Mechanical, physical and thermal properties were experimentally investigated. The effects of temperature, moisture, and immersion time on the deterioration of the composite material were studied for both composites. It was observed that the weight of the samples increased with the immersion time and temperature for both the composites. The highest increase in weight of the …


Electric Field Induced Self-Assembly Of Mesoscale Structured Materials And Smart Fluids, Suchandra Das May 2021

Electric Field Induced Self-Assembly Of Mesoscale Structured Materials And Smart Fluids, Suchandra Das

Dissertations

This dissertation aims to study the forces that drive self-assembly in binary mixtures of particles suspended in liquids and on fluid-liquid interfaces when they are subjected to a uniform electric or magnetic field. Three fluid-particle systems are investigated experimentally and theoretically : (i) Suspensions of dielectric particles in dielectric liquids; (ii) Suspensions of ferromagnetic and diamagnetic particles in ferrofluids; and (iii) Dielectric particles on dielectric fluid-liquid interfaces. The results of these studies are then used to estimate the parameter values needed to assemble materials with desired mesoscale microstructures.

The first fluid-particle system studied is an electrorheological (ER) fluid formed using …


Service Quality Assessment And Improvement Methods And Tools, Kevin M. Moriarty May 2021

Service Quality Assessment And Improvement Methods And Tools, Kevin M. Moriarty

Dissertations

The nucleus of this research concept and system is being applied to turret lathe and milling machine Computer Numerical Control (CNC) tool systems. The research has a generic application to the service of broad array of sophisticated computer controlled / integrated machines, devices / equipment such as industrial robotics, medical equipment, surgical robots, and similar types of engineered system. Quality design review for quality service systems is a unique concept. Standard product service systems are qualitative and subjective in nature. The quantitative system identifies Key Predictive Attributes (KPAs) and applies quantitative methods to these attributes to develop a systematic process …


Private Sound Environments In Public Space: Use Of Headphones In Public Parks And Public Transit, Chathurthi S. De Silva May 2021

Private Sound Environments In Public Space: Use Of Headphones In Public Parks And Public Transit, Chathurthi S. De Silva

Dissertations

The use of headphones is now so commonplace that it is almost second nature for many people to use them. Not only do these people use headphones all the time, but they use them nearly everywhere, including in urban public spaces. In using headphones, people create their own “private sound environments” in public space. This phenomenon merits attention from researchers since the creation of private sound environments may well alter people’s experiences of public space.

This study answers five research questions about the use of headphones in parks and on transit: why people use them, when they begin using headphones …


Investigation Of Topological Phonons In Discrete Mechanical Metamaterials, Kai Qian May 2021

Investigation Of Topological Phonons In Discrete Mechanical Metamaterials, Kai Qian

Dissertations

The study of topological mechanical metamaterials is a new emerging field that focuses on the topological properties of artificial mechanical structures. Inspired by topological insulators, topological mechanism has attracted intensive attention in condensed matter physics and successfully connected the quantum mechanical descriptions of electrons with the classical descriptions of phonons. It has led to experiments of mechanical metamaterials possessing topological characteristics, such as topologically protected conducting edges or surfaces without back-scattering. This dissertation presents a new experimental approach for mechanically engineering topological metamaterials based on patterning magnetically coupled spinners in order to localize the propagation of vibrations and evaluate different …


Advancing The Use Of Quality Control Tools For High-Density Data In Modern Manufacturing, Romina Dastoorian May 2021

Advancing The Use Of Quality Control Tools For High-Density Data In Modern Manufacturing, Romina Dastoorian

Dissertations

In modern manufacturing, advanced metrology systems are continually being incorporated into quality control (QC) systems to provide high-density (HD) datasets. These datasets can contain millions of measurements that can be used to represent a part’s whole geometry. While integrating HD datasets into QC systems has brought several opportunities to enhance the performance of QC systems, it has resulted in new challenges in this area as well. While significant amounts of research have been performed in this area, the QC research community still strives to tackle these challenges. This study identifies key challenges regarding incorporating HD datasets into QC systems. Specifically, …


Thermal Evaluation Of Advanced Leading Edge For Rotating Gas Turbine Blade: Numerical And Experimental Investigations, Amin Safi Apr 2021

Thermal Evaluation Of Advanced Leading Edge For Rotating Gas Turbine Blade: Numerical And Experimental Investigations, Amin Safi

Dissertations

Gas turbine engines play a vital role in our life. Our power demand is significantly and continuously growing. One approach to improve thermal efficiency in gas turbine engines requires a higher turbine inlet gas temperature. Advanced gas turbine engines operate at high temperatures, around 2000 K. Since operating at high temperatures may compromise the blade structure integrity, different cooling systems are used in a turbine blades. One of the most efficient cooling techniques is impingement cooling, mostly used in the leading edge. The leading edge experiences the highest temperature in the blade exposed to the hottest gas.

Researchers studied different …


Human-Robot Interaction For Assistive Robotics, Jiawei Li Dec 2020

Human-Robot Interaction For Assistive Robotics, Jiawei Li

Dissertations

This dissertation presents an in-depth study of human-robot interaction (HRI) withapplication to assistive robotics. In various studies, dexterous in-hand manipulation is included, assistive robots for Sit-To-stand (STS) assistance along with the human intention estimation. In Chapter 1, the background and issues of HRI are explicitly discussed. In Chapter 2, the literature review introduces the recent state-of-the-art research on HRI, such as physical Human-Robot Interaction (HRI), robot STS assistance, dexterous in hand manipulation and human intention estimation. In Chapter 3, various models and control algorithms are described in detail. Chapter 4 introduces the research equipment. Chapter 5 presents innovative theories and …


Experiments And Modeling Of The Chemo-Mechanically Coupled Behavior Of Polymeric Gels, Nikola Bosnjak Dec 2020

Experiments And Modeling Of The Chemo-Mechanically Coupled Behavior Of Polymeric Gels, Nikola Bosnjak

Dissertations

Polymeric materials consist of mutually entangled or chemically crosslinked long njitmolecular chains which form a polymer network. Due to their molecular structure, the njitpolymeric materials are known to undergo large deformation in response to various njitenvironmental stimuli, such as temperature, chemical potential and light.

When a polymer network is exposed to a suitable chemical solvent, the solvent molecules are able to diffuse inside the network, causing it to undergo a large volumetric deformation, known as swelling. In addition to volumetric deformation, this process involves the chemical mixing of the polymer network and solvent molecules, and is typically environmentally responsive. A …


Blast Shock-Wave Characterization In Experimental Shock Tubes, Sudeepto Kahali Dec 2020

Blast Shock-Wave Characterization In Experimental Shock Tubes, Sudeepto Kahali

Dissertations

Blast-induced traumatic brain injuries have affected U.S. soldiers deployed for extended periods in the gulf and Afghanistan wars. To identify the biomechanical and biochemical mechanisms of injury, critical in the identification of diagnostic and therapeutic tools, compressed gas-driven shock tubes are used by investigators to study shockwave-animal specimen interactions and its biological consequences. However, shock tubes are designed and operated in a variety of geometry with a range of process parameters, and the quality of shock wave characteristics relevant to field conditions and therefore the study of blast-induced traumatic brain injuries suffered by soldiers is affected by those conditions. Lab-to-lab …


Practical Adhesion Measurements In Organic Coatings; Advancing Understanding And Mechanical Methods Development, Diana Gottschalk Dec 2020

Practical Adhesion Measurements In Organic Coatings; Advancing Understanding And Mechanical Methods Development, Diana Gottschalk

Dissertations

“Adhesion” can be considered either a mechanical or chemical phenomenon. The mechanical interpretation describes the difficulty of separating surfaces and is useful for quantifying performance within applications that depend on bulk and interfacial properties. Chemical adhesion describes interfacial resistance to chemical attack and does not depend on bulk properties. Predicting chemical failure through mechanical measurement is confounded by the influence of bulk properties. However, the prospect is attractive because of the robust tolerance for sample geometries, allowing experiments to resemble an end-use system. The present work's primary goal was to elevate mechanical methods to provide a detailed interfacial characterization of …


Resonant Triad Interactions In One And Two-Layer Systems, Malik Chabane Aug 2020

Resonant Triad Interactions In One And Two-Layer Systems, Malik Chabane

Dissertations

This dissertation is a study of the weakly nonlinear resonant interactions of a triad of gravity-capillary waves in systems of one and two fluid layers of arbitrary depth, in one and two-dimentions. For one-layer systems, resonant triad interactions of gravity-capillary waves are considered and a region where resonant triads can be always found is identified, in the two-dimensional wavevector angles-space. Then a description of the variations of resonant wavenumbers and wave frequencies over the resonance region is given. The amplitude equations correct to second order in wave slope are used to investigate special resonant triads that, providing their initial amplitude …


Use Of Dimpling Techniques To Alter The Vibration And Acoustic Characteristics Of Beams And Plates, Mofareh Ghazwani Jun 2020

Use Of Dimpling Techniques To Alter The Vibration And Acoustic Characteristics Of Beams And Plates, Mofareh Ghazwani

Dissertations

Structures such as beams and plates can produce potentially high levels of unwanted vibrations and noises in the environment. A method for improving the vibroacoustic characteristics of structures based on creating dimples on its surfaces is presented in this study. The goal of this technique is to keep the mass of the subject structure the same while changing its vibration and sound radiation characteristics. A boundary value model (BVM), derived using Hamilton’s Variational Principle, is used for modeling dimpled beams subjected to various boundary conditions. Using this method, the non-dimensional equations of motion, boundary conditions, and continuity conditions for a …


Experimental Study Of Collecting Running Water From Moderately Heated Water Vapors Using Turbulence-Induced Particles Collision (Tipc) Device, Hassan Ali Ghazwani Jun 2020

Experimental Study Of Collecting Running Water From Moderately Heated Water Vapors Using Turbulence-Induced Particles Collision (Tipc) Device, Hassan Ali Ghazwani

Dissertations

This dissertation describes the development of an alternative technique to collect water vapors or changing any vapor state to liquid state using a device called the turbulence-induced particles collision generator (TIPC). The experiment of collecting water vapors using the TIPC device is conducted at different values of temperature. The spatial patterns of droplets deposited on a wall due to the TIPC are measured at different values of pressure using luminescent oil technique, and the integrated intensity of deposited droplets is calculated. Also, the luminescent oil technique has been used to visualize the deposited particles on a pipe wall. ANSYS FLUENT …


Turbulence Investigations In The Core-Flow Of An Internal Combustion Engine, James R. Macdonald Jun 2020

Turbulence Investigations In The Core-Flow Of An Internal Combustion Engine, James R. Macdonald

Dissertations

Turbulence significantly impacts the operation of energy conversion devices. In internal combustion (IC) engines, mixing, heat transfer, and combustion are all strongly dependent on the turbulence inside the cylinder. Consequently, knowledge of the state of turbulence is critical for improving our understanding and modeling of engine processes.

Turbulence states may be determined through analysis of the Reynolds stress tensor, which can in turn be experimentally quantified using velocity data. In this research, stereoscopic particle image velocimetry (stereo-PIV) experiments were conducted in a single-cylinder, motored engine with optical access to measure the two-dimensional, three-component (2D-3C) velocity fields throughout the compression stroke. …