Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

On The Selection Of A Good Shape Parameter For Rbf Approximation And Its Application For Solving Pdes, Lei-Hsin Kuo Aug 2015

On The Selection Of A Good Shape Parameter For Rbf Approximation And Its Application For Solving Pdes, Lei-Hsin Kuo

Dissertations

Meshless methods utilizing Radial Basis Functions~(RBFs) are a numerical method that require no mesh connections within the computational domain. They are useful for solving numerous real-world engineering problems. Over the past decades, after the 1970s, several RBFs have been developed and successfully applied to recover unknown functions and to solve Partial Differential Equations (PDEs).
However, some RBFs, such as Multiquadratic (MQ), Gaussian (GA), and Matern functions, contain a free variable, the shape parameter, c. Because c exerts a strong influence on the accuracy of numerical solutions, much effort has been devoted to developing methods for determining shape parameters which ...


Development And Applications Of The Expanded Equivalent Fluid Method, Bharath Kumar Kandula Aug 2014

Development And Applications Of The Expanded Equivalent Fluid Method, Bharath Kumar Kandula

Dissertations

Ocean acoustics is the study of sound in the oceans. Electromagnetic waves attenuate rapidly in the water medium. Sound is the best means to transmit information underwater. Computational numerical simulations play an important role in ocean acoustics. Simulations of acoustic propagation in the oceans are challenging due to the complexities involved in the ocean environment. Different methods have been developed to simulate underwater sound propagation. The Parabolic-Equation (PE) method is the best choice in several ocean acoustic problems. In shallow water acoustic experiments, sound loses some of its energy when it interacts with the bottom. An equivalent fluid technique was ...