Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

Enabling Energy Efficiency In Connected And Automated Vehicles Through Predictive Control Techniques, Farhang Motallebiaraghi Jun 2023

Enabling Energy Efficiency In Connected And Automated Vehicles Through Predictive Control Techniques, Farhang Motallebiaraghi

Dissertations

The transportation sector is a significant contributor to global energy consumption and emissions, necessitating the development of sustainable transportation systems. In this regard, connected and automated vehicles (CAVs) have emerged as a potential solution to transform the transportation industry. By harnessing advanced mapping and location technologies, Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication, CAVs offer the promise of improving efficiency, reducing traffic congestion, and enhancing safety and comfort. However, the adoption of CAVs also brings about various challenges, including energy efficiency concerns that need to be addressed to fully realize their potential benefits. This dissertation investigates energy-efficient control techniques for transportation …


Improving Autonomous Vehicles Operational Performance Using Resilience Engineering, Johan Fanas Rojas Jun 2023

Improving Autonomous Vehicles Operational Performance Using Resilience Engineering, Johan Fanas Rojas

Dissertations

Autonomous vehicles are expected to revolutionize the transportation industry by providing a safer and more efficient means of transportation. However, as autonomous vehicles are deployed on public roads, they are exposed to significant risks, both in terms of safety and system performance. Recent studies have highlighted a range of errors and accidents associated with autonomous vehicles, underscoring the need for a systematic approach to improve their operational resilience. Resilience engineering, a discipline focused on designing and analyzing complex systems to better cope with unexpected events and disruptions, offers a promising framework for addressing these challenges. Despite the potential benefits of …


Model Predictive Controller Design For Internal Combustion Engines Based On The Second Law Of Thermodynamics, Muataz Abotabik Jun 2022

Model Predictive Controller Design For Internal Combustion Engines Based On The Second Law Of Thermodynamics, Muataz Abotabik

Dissertations

Energy resources depletion and worldwide strict emissions policies pose challenges that automotive manufacturers try to overcome through researching advanced powertrain technologies such as lean-burn gasoline, direct injection, homogeneous charge compression ignition engines, powertrain electrification, etc. Most of these developments have been focused on conventional internal combustion engines (ICE) emissions and performance enhancements. Most ICE control strategies are built based on the First Law of Thermodynamics (FLT) i.e., to deliver a specific load requirement, enhancing thermal efficiency, etc. The FLT doesn’t account for in-cylinder high temperature thermodynamics process irreversibilities that cause losses in the work potential; up to 25% of the …


Turbulence Investigations In The Core-Flow Of An Internal Combustion Engine, James R. Macdonald Jun 2020

Turbulence Investigations In The Core-Flow Of An Internal Combustion Engine, James R. Macdonald

Dissertations

Turbulence significantly impacts the operation of energy conversion devices. In internal combustion (IC) engines, mixing, heat transfer, and combustion are all strongly dependent on the turbulence inside the cylinder. Consequently, knowledge of the state of turbulence is critical for improving our understanding and modeling of engine processes.

Turbulence states may be determined through analysis of the Reynolds stress tensor, which can in turn be experimentally quantified using velocity data. In this research, stereoscopic particle image velocimetry (stereo-PIV) experiments were conducted in a single-cylinder, motored engine with optical access to measure the two-dimensional, three-component (2D-3C) velocity fields throughout the compression stroke. …