Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Mechanical Engineering

Constitutive Modeling Of The Thermo-Mechanics Associated With Crystallizable Shape Memory Polymers, Gautam Barot Aug 2006

Constitutive Modeling Of The Thermo-Mechanics Associated With Crystallizable Shape Memory Polymers, Gautam Barot

Dissertations

This research addresses issues central to material modeling and process simulations. Here, issues related for developing constitutive model for crystallizable shape memory polymers are addressed in details. Shape memory polymers are novel material that can be easily formed into complex shapes, retaining memory of their original shape even after undergoing large deformations. The temporary shape is stable and return to the original shape is triggered by a suitable mechanism such heating the polymer above a transition temperature. Crystallizable shape memory polymers are called crystallizable because the temporary shape is fixed by a crystalline phase, while return to the original shape …


Effect Of Polymorphic Phase Transformations Within An Alumina Layer On The Ignition Of Aluminum Particles, Mikhaylo Aleksiyovych Trunov May 2006

Effect Of Polymorphic Phase Transformations Within An Alumina Layer On The Ignition Of Aluminum Particles, Mikhaylo Aleksiyovych Trunov

Dissertations

Experimental measurements of aluminum ignition temperature and models used to describe aluminum ignition are reviewed. It is shown that the current models cannot describe ignition of aluminum powders of different sizes and ignited under various experimental conditions. The properties of and phase changes occurring in the alumina scale existing on the surface of aluminum particles at different temperatures are systematically studied. The mechanism of aluminum oxidation is quantified and a new simplified ignition model is developed.

Thermogravimetry was used to study the oxidation of aluminum powders of various particle sizes and surface morphologies in oxygen at temperatures up to 1500°C. …


Synthesis And Characterization Of Mechanically Alloyed Aluminum-Based Compounds As High Energy Density Materials, Xiaoying Zhu May 2006

Synthesis And Characterization Of Mechanically Alloyed Aluminum-Based Compounds As High Energy Density Materials, Xiaoying Zhu

Dissertations

A new type of metastable reactive powders for potential use as high energy density materials in propellants, explosives, and pyrotechnics was developed. These powders are intended to replace aluminum typically added to energetic formulations to increase reaction enthalpy and temperature. The new materials are metastable aluminum-based alloys, which enable achievement of substantially reduced ignition temperatures and accelerated bulk burn rates compared to aluminum. Titanium and lithium were used as alloying components. The materials properties and characteristics leading to their enhanced combustion performance were investigated. The powders were prepared using mechanical alloying and characterized using X-Ray Diffraction (XRD), Scanning Electron Microscopy …


Dynamic Simulations Of Particle Suspensions Subjected To An External Electric-Field, Xianjin Jiang Jan 2006

Dynamic Simulations Of Particle Suspensions Subjected To An External Electric-Field, Xianjin Jiang

Dissertations

A numerical method is performed to study the suspension of polarizable particles in nonconductive solvents subjected to external electric fields. Such particles experience both hydrodynamic and electrostatic interactions. The hydrodynamic force acting on the particles is determined using the Stokesian dynamics method under the assumption that the Reynolds number is much smaller than 1, while the electrostatic force is determined by differentiating the electrostatic energy of the suspension, which is computed from the induced particle dipoles. In addition, the multiple image method is used to compensate for the electrostatic force when two particles are close to each other. Because the …


Modeling, Design, And Fabrication Of Pulsed Fluidic Micro-Actuators, Max Roman Jan 2006

Modeling, Design, And Fabrication Of Pulsed Fluidic Micro-Actuators, Max Roman

Dissertations

The forced vibration of a thin flexible plate or membrane in a sealed cavity with a small opening can cause fluid to be pumped into and out-of the cavity. At particular frequencies and amplitudes of vibration, a streaming of vortex rings can occur near the orifice. These vortex rings move under their own self-induced momentum. Downstream of the opening the rings ultimately break up and can form a fully developed jet. This work is dedicated to the analysis, design, and fabrication of electrostatic micro fluidic actuators, which use the pulsing mechanism described above to generate a fluid flow. Particle Image …


The Effects Of Aging On Cardiac Mechanics, Samuel C. Lieber Jan 2006

The Effects Of Aging On Cardiac Mechanics, Samuel C. Lieber

Dissertations

It is well established that the aging heart exhibits left ventricular (LV) diastolic dysfunction and changes in mechanical properties, which have been attributed to alterations in the extracellular matrix (ECM). The investigators tested the hypothesis that the mechanical properties of cardiac myocytes significantly change with aging thereby contributing to the LV diastolic dysfunction. Cellular mechanical properties were determined by indenting cells with an atomic force microscope (AFM). The indentation results were interpreted by modeling the AFM probe as a blunted cone and determining an apparent elastic modulus (B) with classical infinitesimal strain theory (CIST). A commercially available finite element software …