Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Heat Transfer, Combustion

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 751 - 780 of 1085

Full-Text Articles in Mechanical Engineering

My Lecture Notes (Power Plant Engineering) - Chapter 2, Dr Alireza Zolfaghari Oct 2012

My Lecture Notes (Power Plant Engineering) - Chapter 2, Dr Alireza Zolfaghari

Dr Alireza Zolfaghari

No abstract provided.


کارگاه تخصصی آسايش حرارتی, Dr Alireza Zolfaghari Oct 2012

کارگاه تخصصی آسايش حرارتی, Dr Alireza Zolfaghari

Dr Alireza Zolfaghari

No abstract provided.


An Exercise With The He’S Variation Iteration Method To A Fractional Bernoulli Equation Arising In A Transient Conduction With A Non-Linear Boundary Heat Flux, Jordan Hristov Oct 2012

An Exercise With The He’S Variation Iteration Method To A Fractional Bernoulli Equation Arising In A Transient Conduction With A Non-Linear Boundary Heat Flux, Jordan Hristov

Jordan Hristov

Surface temperature evolution of a body subjected to a nonlinear heat flux involving counteracting convection heating and radiation cooling has been solved by the variations iteration method (VIM) of He. The surface temperature equations comes as a combination of the time-fractional (half-time) subdiffusion model of the heat conduction and the boundary condition relating the temperature field gradient at the surface through the Riemann-Liouville fractional integral. The result of this equation is a Bernoulli-type ordinary fractional equation with a nonlinear term of 4th order. Two approaches in the identification of the general Lagrange multiplier and a consequent application of VIM have …


تمرين سري اول, Dr Alireza Zolfaghari Sep 2012

تمرين سري اول, Dr Alireza Zolfaghari

Dr Alireza Zolfaghari

No abstract provided.


My Lecture Notes (Heat Transfer - Chapter 1), Dr Alireza Zolfaghari Sep 2012

My Lecture Notes (Heat Transfer - Chapter 1), Dr Alireza Zolfaghari

Dr Alireza Zolfaghari

No abstract provided.


Computational Scheme Guided Design Of A Hybrid Mild Gasifier, You Lu Aug 2012

Computational Scheme Guided Design Of A Hybrid Mild Gasifier, You Lu

University of New Orleans Theses and Dissertations

A mild gasification method has been developed to provide an innovative clean coal technology. The objectives of this study are to (a) incorporate a fixed rate devolatilization model into the existing 2D multiphase reaction model, (b) expand the 2D model to 3D and (c) utilize the improved model to investigate the mild-gasification process and guide modification of the mild-gasifier design. The Eulerain-Eulerian method is employed to calculate both the primary phase (air) and secondary phase (coal particles). The improved 3D simulation model, incorporated with a devolatilization model, has been successfully developed and employed to determine the appropriate draft tube dimensions, …


Phase-Resolved Characterization Of Conical Turbulent Premixed Flames: An Investigation Of Forced Blowoff Dynamics, Sayan Biswas Jul 2012

Phase-Resolved Characterization Of Conical Turbulent Premixed Flames: An Investigation Of Forced Blowoff Dynamics, Sayan Biswas

Master's Theses

Flame dynamics of a bluff body stabilized turbulent premixed flame as it approaches lean blowoff is of interest for practical applications. It is also important to understand the flame behavior under harmonic flow perturbations as it may occur due to acoustically unstable operation of compact combustors. In this study, a harmonically excited conical flame was studied to determine its behavior under strong burning and near blowoff conditions. Chemiluminescence imaging was employed using a Photron high speed camera to characterize the phase resolved flame characteristics for a range of excitation frequencies from 50 to 400 Hz in confined and unconfined geometries. …


Capacitively Coupled Radio-Frequency Discharges In Nitrogen At Low Pressures, L. L Alves, L. Marques, C. D Pintassilgo, W. Wattieaux, Et. Es-Sebbar, J. Berndt, E. Kovačević, N. Carrasco, L. Boufendi, G. Cernogora Jul 2012

Capacitively Coupled Radio-Frequency Discharges In Nitrogen At Low Pressures, L. L Alves, L. Marques, C. D Pintassilgo, W. Wattieaux, Et. Es-Sebbar, J. Berndt, E. Kovačević, N. Carrasco, L. Boufendi, G. Cernogora

Dr. Et-touhami Es-sebbar

This paper uses experiments and modelling to study capacitively coupled radio-frequency (rf) discharges in pure nitrogen, at 13.56 MHz frequency, 0.1–1 mbar pressures and 2–30 W coupled powers. Experiments performed on two similar (not twin) setups, existing in the LATMOS and the GREMI laboratories, include electrical and optical emission spectroscopy (OES) measurements. Electrical measurements give the rf-applied and the direct-current-self-bias voltages, the effective power coupled to the plasma and the average electron density. OES diagnostics measure the intensities of radiative transitions with the nitrogen second-positive and first-negative systems, and with the 811.5 nm atomic line of argon (present as an …


Ionization Photophysics And Rydberg Spectroscopy Of Diacetylene, M. Schwell, Y. Benilan, N.. Fray, M.-C. Gazeau, Et. Es-Sebbar, F.-G. Levrel, N. Campion, S. Leach Jun 2012

Ionization Photophysics And Rydberg Spectroscopy Of Diacetylene, M. Schwell, Y. Benilan, N.. Fray, M.-C. Gazeau, Et. Es-Sebbar, F.-G. Levrel, N. Campion, S. Leach

Dr. Et-touhami Es-sebbar

Photoionization of diacetylene was studied using synchrotron radiation over the range 8–24 eV, with photoelectron-photoion coincidence (PEPICO) and threshold photoelectron–photoion coincidence (TPEPICO) techniques. Mass spectra, ion yields, total and partial ionization cross-sections were measured. The adiabatic ionization energy of diacetylene was determined as IEad = (10.17 ± 0.01) eV, and the appearance energy of the principal fragment ion C4H+ as AE = (16.15 ± 0.03) eV. Calculated appearance energies of other fragment ions were used to infer aspects of dissociation pathways forming the weaker fragment ions , C3H+, and C2H+. Structured autoionization features observed in the PEPICO spectrum of diacetylene …


Integral-Balance Solution To The Stokes’ First Problem Of A Viscoelastic Generalized Second Grade Fluid, Jordan Hristov Jun 2012

Integral-Balance Solution To The Stokes’ First Problem Of A Viscoelastic Generalized Second Grade Fluid, Jordan Hristov

Jordan Hristov

Integral balance solution employing entire domain approximation and the penetration dept concept to the Stokes’ first problem of a viscoelastic generalized second grade fluid has been developed. The solution has been performed by a parabolic profile with an unspecified exponent allowing optimization through minimization of the norm over the domain of the penetration depth. The closed form solution explicitly defines two dimensionless similarity variables and , responsible for the viscous and the elastic responses of the fluid to the step jump at the boundary. The solution was developed with three forms of the governing equation through its two dimensional forms …


Thermal Impedance At The Interface Of Contacting Bodies: 1-D Example Solved By Semi-Derivatives, Jordan Hristov Jun 2012

Thermal Impedance At The Interface Of Contacting Bodies: 1-D Example Solved By Semi-Derivatives, Jordan Hristov

Jordan Hristov

Simple 1-D semi-infinite heat conduction problems enable to demonstrate the potential of the fractional calculus in determination of transient thermal impedances of two bodies with different initial temperatures contacting at the interface ( ) at . The approach is purely analytic and uses only semi-derivatives (half-time) and semi-integrals in the Riemann-Liouville sense. The example solved clearly reveals that the fractional calculus is more effective in calculation the thermal resistances than the entire domain solutions


Frg Turbojet, Tyler Vitti Jun 2012

Frg Turbojet, Tyler Vitti

Computer Engineering

Members of the Cal Poly SLO campus club FRG work together with students of several different disciplines to build a functional turbojet engine. Engineering approaches include design, fabrication, testing, and computer sensing, control, and integration. The goal of the project is to produce a running turbojet engine monitored and controlled by embedded hardware and specialized PC software. This project is to be used by later groups for further research and development.


Cryogenic Heat Switch, Daniel Brodkey, Esteban Ruiz, Cristal Vasquez Jun 2012

Cryogenic Heat Switch, Daniel Brodkey, Esteban Ruiz, Cristal Vasquez

Mechanical Engineering

A prototype cryogenic heat switch capable of transferring heat at cryogenic temperatures, while decoupling to prevent irreversible heat damage and minimizing parasitic heat loads, is to be developed for the Jet Propulsion Laboratory. Various material properties and cryogenic heat transfer processes will be investigated to determine the best solution for this project. A working proof of concept model will be constructed that may eventually be integrated onto a spacecraft’s passive cooler systems to protect them from the irradiation emitted by the sun, from the albedo of planets, and other malicious heat sources.


Thermal Vacuum Integration For Cal Poly's Space Environments Laboratory, Chelsea Barackman, Steven Jackowski Jun 2012

Thermal Vacuum Integration For Cal Poly's Space Environments Laboratory, Chelsea Barackman, Steven Jackowski

Aerospace Engineering

The purpose of the senior project is to construct a thermal vacuum by utilizing a preexisting vacuum chamber in the Space Environments Lab, and a donated Advanced Thermal Sciences (ATS) chiller. While a thermal vacuum is already available on campus, building one for the Space Environments Lab would grant undergraduates access to the equipment, allowing a much better understanding of testing methods and procedures in use by the aerospace industry. This paper explains the design and analysis of the thermal vacuum (T-VAC) project as well as the operation and procedures required for the ATS chiller and fill/drain tank. The thermal …


California Olive Ranch Hedger, Tyler Enos, Seth Abbott, David Gamba Jun 2012

California Olive Ranch Hedger, Tyler Enos, Seth Abbott, David Gamba

Mechanical Engineering

The purpose of this project is to evaluate the problems of the current KCI (Kingsburg Cultivator Incorporated) olive tree hedger in use at California Olive Ranch (COR) in Artois, CA, and then correct these problems which should yield a better performing, more efficient, and reliable machine. These problems include: the hydraulic oil temperature getting too high, the saw blades not having enough horsepower, and poor cutting performance due to operator error as well as terrain variations.


An Investigation Of Mist/Air Film Cooling With Application To Gas Turbine Airfoils, Lei Zhao May 2012

An Investigation Of Mist/Air Film Cooling With Application To Gas Turbine Airfoils, Lei Zhao

University of New Orleans Theses and Dissertations

Film cooling is a cooling technique widely used in high-performance gas turbines

to protect turbine airfoils from being damaged by hot flue gases. Film injection holes are

placed in the body of the airfoil to allow coolant to pass from the internal cavity to the

external surface. The ejection of coolant gas results in a layer or “film” of coolant gas

flowing along the external surface of the airfoil.

In this study, a new cooling scheme, mist/air film cooling is proposed and

investigated through experiments. Small amount of tiny water droplets with an average

diameter about 7 μm (mist) is …


Electrohydrodynamic Enhancement Of Heat Transfer And Mass Transport In Gaseous Media, Bulk Dielectric Liquids And Dielectric Thin Liquid Films, Seyed Reza Mahmoudi May 2012

Electrohydrodynamic Enhancement Of Heat Transfer And Mass Transport In Gaseous Media, Bulk Dielectric Liquids And Dielectric Thin Liquid Films, Seyed Reza Mahmoudi

Electronic Thesis and Dissertation Repository

Controlling transport phenomena in liquid and gaseous media through electrostatic forces has brought new important scientific and industrial applications. Although numerous EHD applications have been explored and extensively studied so far, the fast-growing technologies, mainly in the semiconductor industry, introduce new challenges and demands. These challenges require enhancement of heat transfer and mass transport in small scales (sometimes in molecular scales) to remove highly concentrated heat fluxes from reduced size devices. Electric field induced flows, or electrohydrodynamics (EHD), have shown promise in both macro and micro-scale devices.

Several existing problems in EHD heat transfer enhancements were investigated in this thesis. …


Analysis And Testing Of Heat Transfer Through Honeycomb Panels, Daniel D. Nguyen May 2012

Analysis And Testing Of Heat Transfer Through Honeycomb Panels, Daniel D. Nguyen

Aerospace Engineering

This project attempts to simulate accurately the thermal conductivity of honeycomb panels in the normal direction. Due to the large empty space of the honeycomb core, the thermal radiation mode of heat transfer was modeled along with conduction. Using Newton’s Method to solve for a steady state model of heat moving through the honeycomb panel, the theoretical effective thermal conduction of the honeycomb panel was found, ranging from 1.03 to 1.07 Q/m/K for a heat input of 2.5 W to 11.8 W. An experimental model was designed to test the theoretical results, using a cold plate and a heat plate …


Perceptions Measurement Of Professional Certifications To Augment Buffalo State College Baccalaureate Technology Programs, As A Representative American Postsecondary Educational Institution, Christopher N. Brown May 2012

Perceptions Measurement Of Professional Certifications To Augment Buffalo State College Baccalaureate Technology Programs, As A Representative American Postsecondary Educational Institution, Christopher N. Brown

Industrial Technology Theses

The purpose of this study was to assess, measure, and analyze whether voluntary, nationally-recognized professional certification credentials were important to augment technology programs at Buffalo State College (BSC), as a representative postsecondary baccalaureate degree-granting institution offering technology curricula. Six BSC undergraduate technology programs were evaluated within the scope of this study: 1.) Computer Information Systems; 2.) Electrical Engineering, Electronics; 3.) Electrical Engineering, Smart Grid; 4.) Industrial Technology; 5.) Mechanical Engineering; and 6.) Technology Education. This study considered the following three aspects of the problem: a.) postsecondary technology program enrollment and graduation trends; b.) the value/awareness of professional certifications to employers …


Numerical Modeling Of High Temperature Bayonet Heat Exchanger And Decomposer For Decomposition Of Sulfur Trioxide, Vijaisri Nagarajan, Yitung Chen, Tzu-Chen Hung, Qiuwang Wang, Valery Ponyavin Apr 2012

Numerical Modeling Of High Temperature Bayonet Heat Exchanger And Decomposer For Decomposition Of Sulfur Trioxide, Vijaisri Nagarajan, Yitung Chen, Tzu-Chen Hung, Qiuwang Wang, Valery Ponyavin

College of Engineering: Graduate Celebration Programs

Motivation

  • Hydrogen is an attractive energy carrier in the future energy technology.
  • Hydrogen is produced from splitting of water through various process namely electrolysis, photo-electrolysis, photo-biological production and thermochemical water-splitting.
  • The aim of this study is to numerically investigate fluid flow, heat transfer and chemical reaction in bayonet high temperature heat exchanger and decomposer.
  • Parametric studies are performed to achieve maximum decomposition with less pressure drop.


Latent Heat Thermal Energy Storage With Embedded Heat Pipes For Concentrating Solar Power Applications, Christopher Robak Apr 2012

Latent Heat Thermal Energy Storage With Embedded Heat Pipes For Concentrating Solar Power Applications, Christopher Robak

Master's Theses

An innovative, novel concept of combining heat pipes with latent heat thermal energy storage (LHTES) for concentrating solar power (CSP) applications is explored. The low thermal conductivity of phase change materials (PCMs) used in LHTES presents a design challenge due to slow heat transfer rates during heating and cooling of the material. Heat pipes act to decrease the thermal resistance in the PCM, increasing the overall heat transfer rate sufficiently for use in CSP. First, a laboratory scale experiment is presented to validate the concept of using heat pipes in LHTES to reduce thermal resistance in PCM. A commercial scale …


An Experimental Investigation On The Flow Behaviour In A Transpired Air Collector, David Greig Apr 2012

An Experimental Investigation On The Flow Behaviour In A Transpired Air Collector, David Greig

Electronic Thesis and Dissertation Repository

An experimental investigation of the flow dynamics in a transpired air collector channel with a corrugated surface is presented. Particle image velocimetry (PIV) was used to obtain twodimensional velocity fields to compare the effects of surface heating on the flow for five flow rates. Mean velocity and turbulent property profiles are presented and compared. Proper orthogonal decomposition and wavenumber spectrum analyses were also conducted to investigate the underlying interactions between the turbulent structures that comprise the complex flow behaviour observed in corrugated flows. Results show that the corrugated waveform was the primary source of turbulence at all flow rates and …


Numerical Study Of The Performance Of A Model Scramjet Engine, Ayad Alhumadi Apr 2012

Numerical Study Of The Performance Of A Model Scramjet Engine, Ayad Alhumadi

Mechanical & Aerospace Engineering Theses & Dissertations

A computational parametric investigation was conducted to study the effect of variations to several geometric parameters on the performance of a two-dimensional model scramjet engine (square cross section area for 3-D model). Geometric parameters included backstep location, height, and angle and fuel injector angle, diameter, and location. Two- and three-dimensional geometries have been studied, using a finite-volume computational fluid dynamics (CFD) code (FLUENT) with structured grids with sizes between 50,000 and 90,000 cells for the two-dimensional geometry and with structured hexahedral grid sizes between 650,000 and 949,725 cells for the three-dimensional geometry. Otherwise, identical values of program inputs were utilized …


Characterization Of Centrifugally-Loaded Flame Migration For Ultra-Compact Combustors, Kenneth D. Lebay Mar 2012

Characterization Of Centrifugally-Loaded Flame Migration For Ultra-Compact Combustors, Kenneth D. Lebay

Theses and Dissertations

The Air Force Research Laboratory (AFRL) has designed an Ultra Compact Combustor (UCC) showing viable merit for significantly reducing gas turbine combustor length making it a viable candidate for implementation as an inter-turbine burner and realization of efficiency benefits from the resulting near constant temperature cycle. This concept uses an off-axis combustor cavity and projects approximately 66% length reduction over a conventional combustor. The annular nature of the cavity creates high angular acceleration levels, on the order of 500-3500 g's, resulting in strong centrifugal and buoyant forces. This unique combination works to significantly reduce the required burn time and subsequently …


Combustion Simulations Using Graphic Processing Units, Mingjie Wang Mar 2012

Combustion Simulations Using Graphic Processing Units, Mingjie Wang

Master's Theses

Graphic processing units (GPUs) are powerful graphics engines featuring high levels of parallelism and extreme memory bandwidth, which constitute a powerful computing platform to solve complex problems involving chemically reacting flows. In the present study, computer programs for combustion simulations with detailed chemical kinetic mechanisms were compiled in the Compute Unified Device Architecture (CUDA) language for NVIDIA GPU architecture. Ignition processes were simulated under constant pressure and constant volume conditions using an explicit 4th order Runge-Kutta algorithm for time integration. Sufficiently small time steps were identified with time scale analysis to ensure the integration stability. The program was validated …


Volatile Products Controlling Titan’S Tholins Production, N. Carrasco, T. Gautier, Et. Es-Sebbar, P. Pernot, G. Cernogora Mar 2012

Volatile Products Controlling Titan’S Tholins Production, N. Carrasco, T. Gautier, Et. Es-Sebbar, P. Pernot, G. Cernogora

Dr. Et-touhami Es-sebbar

A quantitative agreement between nitrile relative abundances and Titan’s atmospheric composition was recently shown with a reactor simulating the global chemistry occurring in Titan’s atmosphere [Gautier et al. (2011) Icarus, 213: 625]. Here we present a complementary study on the same reactor using an in-situ diagnostic of the gas phase composition. Various initial N2-CH4 gas mixtures (methane varying from 1 to 10%) are studied, with a monitoring of the methane consumption and of the stable gas neutrals by in-situ mass spectrometry. Atomic hydrogen is also measured by optical emission spectroscopy. A positive correlation is found between atomic hydrogen abundance and …


Vuv Photoionization Of Acetamide Studied By Electron / Ion Coincidence Spectroscopy In The 8-24 Ev Photon Energy Range, M. Schwell, Y. Bénilan, N. Fray, M.-C Gazeau, Et. Es-Sebbar, Gustavo A. Garcia, L. Nahon, N. Champion, S. Leach Jan 2012

Vuv Photoionization Of Acetamide Studied By Electron / Ion Coincidence Spectroscopy In The 8-24 Ev Photon Energy Range, M. Schwell, Y. Bénilan, N. Fray, M.-C Gazeau, Et. Es-Sebbar, Gustavo A. Garcia, L. Nahon, N. Champion, S. Leach

Dr. Et-touhami Es-sebbar

A VUV photoionization study of acetamide was carried out over the 8-24 eV photon energy range using synchrotron radiation and photoelectron/photoion coincidence (PEPICO) spectroscopy. Threshold photoelectron photoion coincidence (TPEPICO) measurements were also made. Photoion yield curves and branching ratios were measured for the parent ion and six fragment ions. The adiabatic ionization energy of acetamide was determined as I.E (12A’) = (9.71±0.02) eV, in agreement with an earlier reported photoionization mass spectrometry (PIMS) value. The adiabatic energy of the first excited state of the ion, 12A”, was determined to be ≈ 10.1 eV. Assignments of the fragment ions and the …


High Speed Flow Simulation In Fuel Injector Nozzles, Sukanta Rakshit Jan 2012

High Speed Flow Simulation In Fuel Injector Nozzles, Sukanta Rakshit

Masters Theses 1911 - February 2014

Atomization of fuel is essential in controlling combustion inside a direct injection engine. Controlling combustion helps in reducing emissions and boosting efficiency. Cavitation is one of the factors that significantly affect the nature of spray in a combustion chamber. Typical fuel injector nozzles are small and operate at a very high pressure, which limit the study of internal nozzle behavior. The time and length scales further limit the experimental study of a fuel injector nozzle. Simulating cavitation in a fuel injector will help in understanding the phenomenon and will assist in further development.

The construction of any simulation of cavitating …


10 - استفاده ي مؤثر از شناور حرارتي وسايل گرمايشي احتراقي به منظور کنترل کيفيت هواي داخل, Chamran Nowrouzi, Mehdi Maerefat, Alireza Zolfaghari Jan 2012

10 - استفاده ي مؤثر از شناور حرارتي وسايل گرمايشي احتراقي به منظور کنترل کيفيت هواي داخل, Chamran Nowrouzi, Mehdi Maerefat, Alireza Zolfaghari

Dr Alireza Zolfaghari

No abstract provided.


Varma Steam Turbine, Vijaya Krushna Varma Mr Jan 2012

Varma Steam Turbine, Vijaya Krushna Varma Mr

VIJAYA KRUSHNA VARMA Mr

Varma turbines are ultra modern and high efficiency turbines which can use gas, steam or fuels as feed to produce electricity or mechanical work for wide range of usages and applications in industries or at work sites. Varma turbine engines can be used in all types of vehicles. These turbines can also be used in aircraft, ships, battle tanks, dredgers, mining equipment, earth moving machines etc