Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Mechanical Engineering

Triggering Thermal Runaway In Lithium-Ion Batteries, Chris John May 2022

Triggering Thermal Runaway In Lithium-Ion Batteries, Chris John

Honors Scholar Theses

The proliferation of lithium-ion batteries enables electric devices such as cell phones to electric vehicles to become a reality. A latent danger, however, exists in these batteries. Mechanical, thermal, or electrical damage can initiate a phenomenon known as thermal runaway (TR). This damage causes internal short circuits within the battery, releasing heat and triggering exothermic decomposition reactions. The battery will catch fire if rapid cooling is not present. While experimental designs exist for evaluating TR, significant safety hazards and impracticality may impede testing efforts. Finite element analysis, therefore, becomes a vital tool in modeling TR and mitigation techniques. However, there …


Computational Analysis Of A New Planar Mixing Layer Flame Configuration To Study Soot Inception, Carmen Ciardiello May 2020

Computational Analysis Of A New Planar Mixing Layer Flame Configuration To Study Soot Inception, Carmen Ciardiello

Honors Scholar Theses

The production of soot is omnipresent in society today. Soot is the product of many of the combustion processes that provide the bulk of the usable energy throughout the world. Furthermore, soot particulate poses a great danger to both the environment and all forms of life on Earth. It has proven to pollute ecosystems, foster health problems for human beings, and degrade air quality [1].

These dangers make studying and understanding soot particulate paramount for improving the quality of life. Thus, this study introduces a new flame configuration for studying soot inception. Presently, various common flame configurations have been found …


Phase-Resolved Characterization Of Conical Turbulent Premixed Flames: An Investigation Of Forced Blowoff Dynamics, Sayan Biswas Jul 2012

Phase-Resolved Characterization Of Conical Turbulent Premixed Flames: An Investigation Of Forced Blowoff Dynamics, Sayan Biswas

Master's Theses

Flame dynamics of a bluff body stabilized turbulent premixed flame as it approaches lean blowoff is of interest for practical applications. It is also important to understand the flame behavior under harmonic flow perturbations as it may occur due to acoustically unstable operation of compact combustors. In this study, a harmonically excited conical flame was studied to determine its behavior under strong burning and near blowoff conditions. Chemiluminescence imaging was employed using a Photron high speed camera to characterize the phase resolved flame characteristics for a range of excitation frequencies from 50 to 400 Hz in confined and unconfined geometries. …


Latent Heat Thermal Energy Storage With Embedded Heat Pipes For Concentrating Solar Power Applications, Christopher Robak Apr 2012

Latent Heat Thermal Energy Storage With Embedded Heat Pipes For Concentrating Solar Power Applications, Christopher Robak

Master's Theses

An innovative, novel concept of combining heat pipes with latent heat thermal energy storage (LHTES) for concentrating solar power (CSP) applications is explored. The low thermal conductivity of phase change materials (PCMs) used in LHTES presents a design challenge due to slow heat transfer rates during heating and cooling of the material. Heat pipes act to decrease the thermal resistance in the PCM, increasing the overall heat transfer rate sufficiently for use in CSP. First, a laboratory scale experiment is presented to validate the concept of using heat pipes in LHTES to reduce thermal resistance in PCM. A commercial scale …


Combustion Simulations Using Graphic Processing Units, Mingjie Wang Mar 2012

Combustion Simulations Using Graphic Processing Units, Mingjie Wang

Master's Theses

Graphic processing units (GPUs) are powerful graphics engines featuring high levels of parallelism and extreme memory bandwidth, which constitute a powerful computing platform to solve complex problems involving chemically reacting flows. In the present study, computer programs for combustion simulations with detailed chemical kinetic mechanisms were compiled in the Compute Unified Device Architecture (CUDA) language for NVIDIA GPU architecture. Ignition processes were simulated under constant pressure and constant volume conditions using an explicit 4th order Runge-Kutta algorithm for time integration. Sufficiently small time steps were identified with time scale analysis to ensure the integration stability. The program was validated …


Development Of Analytic Tools For Computational Flame Diagnostics, Mehrnaz Rouhi Youssefi Aug 2011

Development Of Analytic Tools For Computational Flame Diagnostics, Mehrnaz Rouhi Youssefi

Master's Theses

No abstract provided.


Experimental And Numerical Investigations Of Tubular-Shaped Direct Methanol Fuel Cells (Dmfcs), Travis R. Ward Aug 2011

Experimental And Numerical Investigations Of Tubular-Shaped Direct Methanol Fuel Cells (Dmfcs), Travis R. Ward

Master's Theses

This study focuses on both the numerical and experimental investigations of the novel, passively operated, tubular-shaped, Direct Methanol Fuel Cell (DMFC) as an alternative geometry to the traditional planar-shaped fuel cell. The benefit of the tubular geometry compared to the planar geometry is the higher instantaneous volumetric power density provided by the larger active area, which could be beneficial in applications that require a high instantaneous power while occupying a small volume. First, a two-dimensional, two-phase, non-isothermal model was developed to investigate the steady-state performance and design characteristics of a tubular-shaped, passive DMFC. It was found that a higher ambient …


An Optical Analysis Of The Blowoff Behavior For Bluff Body-Stabilized Flames In Vitiated Flow, Trevor Jensen Aug 2011

An Optical Analysis Of The Blowoff Behavior For Bluff Body-Stabilized Flames In Vitiated Flow, Trevor Jensen

Master's Theses

In bluff body-stabilized flames, a variety of physical phenomena contribute to the flame destabilization as lean blowoff is approached. These effects include increased strain on the flame shear layers, decreased attenuation of Bénard-von Kármán vortex shedding, and the presence of thermoacoustic instabilities. Lean, bluff body-stabilized flames were studied in an enclosed rectangular-duct, turbulent combustion rig with a triangular flame holder under vitiated conditions with both symmetric and asymmetric fuel distributions. Air and fuel flows within the rig were characterized using a PIV system and a continuous emissions gas analyzer, respectively.

High-speed videos of these flames undergoing blowoff were taken to …