Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 91 - 120 of 8623

Full-Text Articles in Physical Sciences and Mathematics

Data Driven And Machine Learning Based Modeling And Predictive Control Of Combustion At Reactivity Controlled Compression Ignition Engines, Behrouz Khoshbakht Irdmousa Jan 2024

Data Driven And Machine Learning Based Modeling And Predictive Control Of Combustion At Reactivity Controlled Compression Ignition Engines, Behrouz Khoshbakht Irdmousa

Dissertations, Master's Theses and Master's Reports

Reactivity Controlled Compression Ignition (RCCI) engines operates has capacity to provide higher thermal efficiency, lower particular matter (PM), and lower oxides of nitrogen (NOx) emissions compared to conventional diesel combustion (CDC) operation. Achieving these benefits is difficult since real-time optimal control of RCCI engines is challenging during transient operation. To overcome these challenges, data-driven machine learning based control-oriented models are developed in this study. These models are developed based on Linear Parameter-Varying (LPV) modeling approach and input-output based Kernelized Canonical Correlation Analysis (KCCA) approach. The developed dynamic models are used to predict combustion timing (CA50), indicated mean effective pressure (IMEP), …


Enhancing Water Safety: Exploring Recent Technological Approaches For Drowning Detection, Salman Jalalifar, Andrew Belford, Eila Erfani, Amir Razmjou, Rouzbeh Abbassi, Masoud Mohseni-Dargah, Mohsen Asadnia Jan 2024

Enhancing Water Safety: Exploring Recent Technological Approaches For Drowning Detection, Salman Jalalifar, Andrew Belford, Eila Erfani, Amir Razmjou, Rouzbeh Abbassi, Masoud Mohseni-Dargah, Mohsen Asadnia

Research outputs 2022 to 2026

Drowning poses a significant threat, resulting in unexpected injuries and fatalities. To promote water sports activities, it is crucial to develop surveillance systems that enhance safety around pools and waterways. This paper presents an overview of recent advancements in drowning detection, with a specific focus on image processing and sensor-based methods. Furthermore, the potential of artificial intelligence (AI), machine learning algorithms (MLAs), and robotics technology in this field is explored. The review examines the technological challenges, benefits, and drawbacks associated with these approaches. The findings reveal that image processing and sensor-based technologies are the most effective approaches for drowning detection …


Detection Of Tooth Position By Yolov4 And Various Dental Problems Based On Cnn With Bitewing Radiograph, Kuo Chen Li, Yi-Cheng Mao, Mu-Feng Lin, Yi-Qian Li, Chiung-An Chen, Tsung-Yi Chen, Patricia Angela R. Abu Jan 2024

Detection Of Tooth Position By Yolov4 And Various Dental Problems Based On Cnn With Bitewing Radiograph, Kuo Chen Li, Yi-Cheng Mao, Mu-Feng Lin, Yi-Qian Li, Chiung-An Chen, Tsung-Yi Chen, Patricia Angela R. Abu

Department of Information Systems & Computer Science Faculty Publications

Periodontitis is a high prevalence dental disease caused by bacterial infection of the bone that surrounds the tooth. Early detection and precision treatment can prevent more severe symptoms such as tooth loss. Traditionally, periodontal disease is identified and labeled manually by dental professionals. The task requires expertise and extensive experience, and it is highly repetitive and time-consuming. The aim of this study is to explore the application of AI in the field of dental medicine. With the inherent learning capabilities, AI exhibits remarkable proficiency in processing extensive datasets and effectively managing repetitive tasks. This is particularly advantageous in professions demanding …


Meta-Icvi: Ensemble Validity Metrics For Concise Labeling Of Correct, Under- Or Over-Partitioning In Streaming Clustering, Niklas M. Melton, Sasha A. Petrenko, Donald C. Wunsch Jan 2024

Meta-Icvi: Ensemble Validity Metrics For Concise Labeling Of Correct, Under- Or Over-Partitioning In Streaming Clustering, Niklas M. Melton, Sasha A. Petrenko, Donald C. Wunsch

Electrical and Computer Engineering Faculty Research & Creative Works

Understanding the performance and validity of clustering algorithms is both challenging and crucial, particularly when clustering must be done online. Until recently, most validation methods have relied on batch calculation and have required considerable human expertise in their interpretation. Improving real-time performance and interpretability of cluster validation, therefore, continues to be an important theme in unsupervised learning. Building upon previous work on incremental cluster validity indices (iCVIs), this paper introduces the Meta- iCVI as a tool for explainable and concise labeling of partition quality in online clustering. Leveraging a time-series classifier and data-fusion techniques, the Meta- iCVI combines the outputs …


Optimal Trajectory Tracking For Uncertain Linear Discrete-Time Systems Using Time-Varying Q-Learning, Maxwell Geiger, Vignesh Narayanan, Sarangapani Jagannathan Jan 2024

Optimal Trajectory Tracking For Uncertain Linear Discrete-Time Systems Using Time-Varying Q-Learning, Maxwell Geiger, Vignesh Narayanan, Sarangapani Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

This Article Introduces a Novel Optimal Trajectory Tracking Control Scheme Designed for Uncertain Linear Discrete-Time (DT) Systems. in Contrast to Traditional Tracking Control Methods, Our Approach Removes the Requirement for the Reference Trajectory to Align with the Generator Dynamics of an Autonomous Dynamical System. Moreover, It Does Not Demand the Complete Desired Trajectory to Be Known in Advance, Whether through the Generator Model or Any Other Means. Instead, Our Approach Can Dynamically Incorporate Segments (Finite Horizons) of Reference Trajectories and Autonomously Learn an Optimal Control Policy to Track Them in Real Time. to Achieve This, We Address the Tracking Problem …


An Analysis Of Precision: Occlusion And Perspective Geometry’S Role In 6d Pose Estimation, Jeffrey Choate, Derek Worth, Scott Nykl, Clark N. Taylor, Brett J. Borghetti, Christine M. Schubert Kabban Jan 2024

An Analysis Of Precision: Occlusion And Perspective Geometry’S Role In 6d Pose Estimation, Jeffrey Choate, Derek Worth, Scott Nykl, Clark N. Taylor, Brett J. Borghetti, Christine M. Schubert Kabban

Faculty Publications

Achieving precise 6 degrees of freedom (6D) pose estimation of rigid objects from color images is a critical challenge with wide-ranging applications in robotics and close-contact aircraft operations. This study investigates key techniques in the application of YOLOv5 object detection convolutional neural network (CNN) for 6D pose localization of aircraft using only color imagery. Traditional object detection labeling methods suffer from inaccuracies due to perspective geometry and being limited to visible key points. This research demonstrates that with precise labeling, a CNN can predict object features with near-pixel accuracy, effectively learning the distinct appearance of the object due to perspective …


Nonuniform Sampling-Based Breast Cancer Classification, Santiago Posso Jan 2024

Nonuniform Sampling-Based Breast Cancer Classification, Santiago Posso

Theses and Dissertations--Electrical and Computer Engineering

The emergence of deep learning models and their success in visual object recognition have fueled the medical imaging community's interest in integrating these algorithms to improve medical diagnosis. However, natural images, which have been the main focus of deep learning models and mammograms, exhibit fundamental differences. First, breast tissue abnormalities are often smaller than salient objects in natural images. Second, breast images have significantly higher resolutions but are generally heavily downsampled to fit these images to deep learning models. Models that handle high-resolution mammograms require many exams and complex architectures. Additionally, spatially resizing mammograms leads to losing discriminative details essential …


Adaptive Resilient Control For A Class Of Nonlinear Distributed Parameter Systems With Actuator Faults, Hasan Ferdowsi, Jia Cai, Sarangapani Jagannathan Jan 2024

Adaptive Resilient Control For A Class Of Nonlinear Distributed Parameter Systems With Actuator Faults, Hasan Ferdowsi, Jia Cai, Sarangapani Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents a new model-based fault resilient control scheme for a class of nonlinear distributed parameter systems (DPS) represented by parabolic partial differential equations (PDE) in the presence of actuator faults. A Luenberger-like observer on the basis of nonlinear PDE representation of DPS is developed with boundary measurements. A detection residual is generated by taking the difference between the measured output of the DPS and the estimated one given by the observer. Once a fault is detected, an unknown actuator fault parameter vector together with a known basis function is utilized to adaptively estimate the fault dynamics. A novel …


Sub-Band Backdoor Attack In Remote Sensing Imagery, Kazi Aminul Islam, Hongyi Wu, Chunsheng Xin, Rui Ning, Liuwan Zhu, Jiang Li Jan 2024

Sub-Band Backdoor Attack In Remote Sensing Imagery, Kazi Aminul Islam, Hongyi Wu, Chunsheng Xin, Rui Ning, Liuwan Zhu, Jiang Li

Electrical & Computer Engineering Faculty Publications

Remote sensing datasets usually have a wide range of spatial and spectral resolutions. They provide unique advantages in surveillance systems, and many government organizations use remote sensing multispectral imagery to monitor security-critical infrastructures or targets. Artificial Intelligence (AI) has advanced rapidly in recent years and has been widely applied to remote image analysis, achieving state-of-the-art (SOTA) performance. However, AI models are vulnerable and can be easily deceived or poisoned. A malicious user may poison an AI model by creating a stealthy backdoor. A backdoored AI model performs well on clean data but behaves abnormally when a planted trigger appears in …


Domain Adaptive Federated Learning For Multi-Institution Molecular Mutation Prediction And Bias Identification, W. Farzana, M. A. Witherow, I. Longoria, M. S. Sadique, A. Temtam, K. M. Iftekharuddin Jan 2024

Domain Adaptive Federated Learning For Multi-Institution Molecular Mutation Prediction And Bias Identification, W. Farzana, M. A. Witherow, I. Longoria, M. S. Sadique, A. Temtam, K. M. Iftekharuddin

Electrical & Computer Engineering Faculty Publications

Deep learning models have shown potential in medical image analysis tasks. However, training a generalized deep learning model requires huge amounts of patient data that is usually gathered from multiple institutions which may raise privacy concerns. Federated learning (FL) provides an alternative to sharing data across institutions. Nonetheless, FL is susceptible to a few challenges including inversion attacks on model weights, heterogenous data distributions, and bias. This study addresses heterogeneity and bias issues for multi-institution patient data by proposing domain adaptive FL modeling using several radiomics (volume, fractal, texture) features for O6-methylguanine-DNA methyltransferase (MGMT) classification across multiple institutions. The proposed …


Using Feature Selection Enhancement To Evaluate Attack Detection In The Internet Of Things Environment, Khawlah Harahsheh, Rami Al-Naimat, Chung-Hao Chen Jan 2024

Using Feature Selection Enhancement To Evaluate Attack Detection In The Internet Of Things Environment, Khawlah Harahsheh, Rami Al-Naimat, Chung-Hao Chen

Electrical & Computer Engineering Faculty Publications

The rapid evolution of technology has given rise to a connected world where billions of devices interact seamlessly, forming what is known as the Internet of Things (IoT). While the IoT offers incredible convenience and efficiency, it presents a significant challenge to cybersecurity and is characterized by various power, capacity, and computational process limitations. Machine learning techniques, particularly those encompassing supervised classification techniques, offer a systematic approach to training models using labeled datasets. These techniques enable intrusion detection systems (IDSs) to discern patterns indicative of potential attacks amidst the vast amounts of IoT data. Our investigation delves into various aspects …


Decompositions Of Nonlinear Input-Output Systems To Zero The Output, W. Steven Gray, Kurusch Ebrahimi-Fard, Alexander Schmeding Jan 2024

Decompositions Of Nonlinear Input-Output Systems To Zero The Output, W. Steven Gray, Kurusch Ebrahimi-Fard, Alexander Schmeding

Electrical & Computer Engineering Faculty Publications

Consider an input–output system where the output is the tracking error given some desired reference signal. It is natural to consider under what conditions the problem has an exact solution, that is, the tracking error is exactly the zero function. If the system has a well defined relative degree and the zero function is in the range of the input–output map, then it is well known that the system is locally left invertible, and thus, the problem has a unique exact solution. A system will fail to have relative degree when more than one exact solution exists. The general goal …


Urban Flood Extent Segmentation And Evaluation From Real-World Surveillance Camera Images Using Deep Convolutional Neural Network, Yidi Wang, Yawen Shen, Behrouz Salahshour, Mecit Cetin, Khan Iftekharuddin, Navid Tahvildari, Guoping Huang, Devin K. Harris, Kwame Ampofo, Jonathan L. Goodall Jan 2024

Urban Flood Extent Segmentation And Evaluation From Real-World Surveillance Camera Images Using Deep Convolutional Neural Network, Yidi Wang, Yawen Shen, Behrouz Salahshour, Mecit Cetin, Khan Iftekharuddin, Navid Tahvildari, Guoping Huang, Devin K. Harris, Kwame Ampofo, Jonathan L. Goodall

Civil & Environmental Engineering Faculty Publications

This study explores the use of Deep Convolutional Neural Network (DCNN) for semantic segmentation of flood images. Imagery datasets of urban flooding were used to train two DCNN-based models, and camera images were used to test the application of the models with real-world data. Validation results show that both models extracted flood extent with a mean F1-score over 0.9. The factors that affected the performance included still water surface with specular reflection, wet road surface, and low illumination. In testing, reduced visibility during a storm and raindrops on surveillance cameras were major problems that affected the segmentation of flood extent. …


Towards Digital Twins For Optimizing Metrics In Distributed Storage Systems - A Review, May Itani, Layal Abu Daher, Ahmad Hammoud Dec 2023

Towards Digital Twins For Optimizing Metrics In Distributed Storage Systems - A Review, May Itani, Layal Abu Daher, Ahmad Hammoud

BAU Journal - Science and Technology

With the exponential data growth, there is a crucial need for highly available, scalable, reliable, and cost-effective Distributed Storage Systems (DSSs). To ensure such efficient and fault tolerant systems, replication and erasure coding techniques are typically used in traditional DSSs. However, these systems are prone to failure and require different failure prevention and recovery algorithms. Failure recovery of DSS and data reconstruction techniques take into consideration different performance metrics optimization in the recovery process. In this paper, DSS performance metrics are introduced. Several recent papers related to adopting erasure coding in DSSs are surveyed together with highlighting related performance metrics …


Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia Dec 2023

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


Electrochemical Performance Of Porous Ceramic Supported Tubular Solid Oxide Electrolysis Cell, Heng-Ji Wang, Wen-Guo Chen, Zhou-Yi Quan, Kai Zhao, Yi-Fei Sun, Min Chen, Ogenko Volodymyr Dec 2023

Electrochemical Performance Of Porous Ceramic Supported Tubular Solid Oxide Electrolysis Cell, Heng-Ji Wang, Wen-Guo Chen, Zhou-Yi Quan, Kai Zhao, Yi-Fei Sun, Min Chen, Ogenko Volodymyr

Journal of Electrochemistry

Solid oxide electrolysis cell (SOEC) is an efficient and clean energy conversion technology that can utilize electricity obtained from renewable resources, such as solar, wind, and geothermal energy to electrolyze water and produce hydrogen. The conversion of abundant intermittent energy to hydrogen energy would facilitate the efficient utilization of energy resources. SOEC is an all-ceramic electrochemical cell that operates in the intermediate to high temperature range of 500–750 ℃. Compared with traditional low temperature electrolysis technology (e.g., alkaline or proton exchange membrane cells operating at ~100 ℃), the high-temperature SOEC can increase the electrolysis efficiency from 80% to ~100%, providing …


Nitrogen-Doped Graphite Felt On The Performance Of Aqueous Quinone-Based Redox Flow Batteries, Heng Zhang, Li-Xing Xia, Shan Jiang, Fu-Zhi Wang, Zhan-Ao Tan Dec 2023

Nitrogen-Doped Graphite Felt On The Performance Of Aqueous Quinone-Based Redox Flow Batteries, Heng Zhang, Li-Xing Xia, Shan Jiang, Fu-Zhi Wang, Zhan-Ao Tan

Journal of Electrochemistry

Modification of electrode is vitally important for achieving high energy efficiency in aqueous quinone-based redox flow batteries (AQRFBs). The modification of graphite felt (GF) was carried out by means of urea hydrothermal reaction, and simultaneously, the effects of hydrothermal reaction time on the functional groups and surface structure of nitrogen-doped graphite felt were studied. The surface morphology and defect, element content and surface chemical state of the modified electrode were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) test, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The electrochemical performance of the modified electrodes was evaluated by cyclic voltammetry, electrochemical impedance …


An In-Situ Raman Spectroscopic Study On The Interfacial Process Of Carbonate-Based Electrolyte On Nanostructured Silver Electrode, Yu Gu, Yuan-Fei Hu, Wei-Wei Wang, En-Ming You, Shuai Tang, Jian-Jia Su, Jun Yi, Jia-Wei Yan, Zhong-Qun Tian, Bing-Wei Mao Dec 2023

An In-Situ Raman Spectroscopic Study On The Interfacial Process Of Carbonate-Based Electrolyte On Nanostructured Silver Electrode, Yu Gu, Yuan-Fei Hu, Wei-Wei Wang, En-Ming You, Shuai Tang, Jian-Jia Su, Jun Yi, Jia-Wei Yan, Zhong-Qun Tian, Bing-Wei Mao

Journal of Electrochemistry

The solid-electrolyte interphase (SEI) plays a key role in anodes for rechargeable lithium-based battery technologies. However, a thorough understanding in the mechanisms of SEI formation and evolution remains a major challenge, hindering the rapid development and wide applications of Li-based batteries. Here, we devise a borrowing surface-enhanced Raman scattering (SERS) activity strategy by utilizing a size optimized Ag nanosubstrate to in-situ monitor the formation and evolution of SEI, as well as its structure and chemistry in an ethylene carbonate-based electrolyte. To ensure a reliable in-situ SERS investigation, we designed a strict air-tight Raman cell with a three-electrode configuration. Based on …


Solar-Powered Microgrids In Northern California: An Opportunity For Resilience, Marina Riddle Dec 2023

Solar-Powered Microgrids In Northern California: An Opportunity For Resilience, Marina Riddle

Master's Projects and Capstones

Planned and unplanned power outages have been increasing in frequency and duration, negatively impacting all public sectors, and threatening public safety. These outages are deadly to those who rely on medical devices. As climate change-fueled extreme weather events (wildfires, earthquakes, storms, etc.) also increase in frequency, our electrical grid must be prepared to bounce back. Microgrids provide necessary redundancy and reliability. Through a novel GIS suitability analysis, based on solar radiation, land use type, local energy demand, distance to transmission lines, distance to roads, and slope, optimal locations for solar-powered microgrids throughout Northern California were determined. The counties of Fresno, …


A Map-Algebra-Inspired Approach For Interacting With Wireless Sensor Networks, Cyber-Physical Systems Or Internet Of Things, David Almeida Dec 2023

A Map-Algebra-Inspired Approach For Interacting With Wireless Sensor Networks, Cyber-Physical Systems Or Internet Of Things, David Almeida

Electronic Theses and Dissertations

The typical approach for consuming data from wireless sensor networks (WSN) and Internet of Things (IoT) has been to send data back to central servers for processing and analysis. This thesis develops an alternative strategy for processing and acting on data directly in the environment referred to as Active embedded Map Algebra (AeMA). Active refers to the near real time production of data, and embedded refers to the architecture of distributed embedded sensor nodes. Network macroprogramming, a style of programming adopted for wireless sensor networks and IoT, addresses the challenges of coordinating the behavior of multiple connected devices through a …


Static And Dynamic State Estimation Applications In Power Systems Protection And Control Engineering, Ibukunoluwa Olayemi Korede Dec 2023

Static And Dynamic State Estimation Applications In Power Systems Protection And Control Engineering, Ibukunoluwa Olayemi Korede

Doctoral Dissertations

The developed methodologies are proposed to serve as support for control centers and fault analysis engineers. These approaches provide a dependable and effective means of pinpointing and resolving faults, which ultimately enhances power grid reliability. The algorithm uses the Least Absolute Value (LAV) method to estimate the augmented states of the PCB, enabling supervisory monitoring of the system. In addition, the application of statistical analysis based on projection statistics of the system Jacobian as a virtual sensor to detect faults on transmission lines. This approach is particularly valuable for detecting anomalies in transmission line data, such as bad data or …


Initiation Criteria For The Onset Of Geomagnetic Substorms Based On Auroral Observations And Electrojet Current Signatures, Mayowa Michael Kayode-Adeoye Dec 2023

Initiation Criteria For The Onset Of Geomagnetic Substorms Based On Auroral Observations And Electrojet Current Signatures, Mayowa Michael Kayode-Adeoye

<strong> Theses and Dissertations </strong>

In recent years, several substorm onset criteria have been developed, either from auroral observations (many authors) or from auroral electrojet properties such as those described by (Forsyth et al., 2015; Maimaiti et al., 2019; Newell & Gjerloev, 2011; Partamies et al., 2011) The different criteria are being investigated using a low order physics model of the magnetosphere called WINDMI (Spencer et al., 2009) and inferences are being made in line with the WINDMI model. The model variables will be compared with the criteria for substorm onset proposed by examining the SML index.

The WINDMI model uses solar wind and IMF …


Hpc-Enabled Fast And Configurable Dynamic Simulation, Analysis, And Learning For Complex Power System Adaptation And Control, Cong Wang Dec 2023

Hpc-Enabled Fast And Configurable Dynamic Simulation, Analysis, And Learning For Complex Power System Adaptation And Control, Cong Wang

All Dissertations

This dissertation presents an HPC-enabled fast and configurable dynamic simulation, analysis, and learning framework for complex power system adaptation and control. Dynamic simulation for a large transmission system comprising thousands of buses and branches implies the latency of complicated numerical computations. However, faster-than-real-time execution is often required to provide timely support for power system planning and operation. The traditional approaches for speeding up the simulation demand extensive computing facilities such as CPU-based multi-core supercomputers, resulting in heavily resource-dependent solutions. In this work, by coupling the Message Passing Interface (MPI) protocol with an advanced heterogeneous programming environment, further acceleration can be …


Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt Dec 2023

Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt

All Dissertations

Remotely actuated microscale swimming robots have the potential to revolutionize many aspects of biomedicine. However, for the longterm goals of this field of research to be achievable, it is necessary to develop modelling, simulation, and control strategies which effectively and efficiently account for not only the motion of individual swimmers, but also the complex interactions of such swimmers with their environment including other nearby swimmers, boundaries, other cargo and passive particles, and the fluid medium itself. The aim of this thesis is to study these problems in simulation from the perspective of controls and dynamical systems, with a particular focus …


Use Of Digital Twins To Mitigate Communication Failures In Microgrids, Andrew Eggebeen Dec 2023

Use Of Digital Twins To Mitigate Communication Failures In Microgrids, Andrew Eggebeen

Theses and Dissertations

This work investigates digital twin (DT) applications for electric power system (EPS) resilience. A novel DT architecture is proposed consisting of a physical twin, a virtual twin, an intelligent agent, and data communications. Requirements for the virtual twin are identified. Guidelines are provided for generating, capturing, and storing data to train the intelligent agent. The relationship between the DT development process and an existing controller hardware-in-the-loop (CHIL) process is discussed. To demonstrate the proposed DT architecture and development process, a DT for a battery energy storage system (BESS) is created based on the simulation of an industrial nanogrid. The creation …


Travel Time Theory For Traffic Conservation Laws With Applications, Sergio Contreras Dec 2023

Travel Time Theory For Traffic Conservation Laws With Applications, Sergio Contreras

UNLV Theses, Dissertations, Professional Papers, and Capstones

Travel time is an important concept in various intelligent transportation system (ITS) applications. The concept is used in a wide array of applications, such as system planning, system performance, and optimization. Reducing the time required to travel between different points on a network is an important goal. Benefits include reducing time wasted in traveling, and keeping travelers satisfied. Thus, studying and reducing travel time in ITS is beneficial in different applications.

The classic density-based Lighthill Whitman Richards (LWR) equation for modeling traffic flow is the starting point in this dissertation. A more recent travel time dynamics function built on top …


A Design Strategy To Improve Machine Learning Resiliency Of Physically Unclonable Functions Using Modulus Process, Yuqiu Jiang Dec 2023

A Design Strategy To Improve Machine Learning Resiliency Of Physically Unclonable Functions Using Modulus Process, Yuqiu Jiang

Theses and Dissertations

Physically unclonable functions (PUFs) are hardware security primitives that utilize non-reproducible manufacturing variations to provide device-specific challenge-response pairs (CRPs). Such primitives are desirable for applications such as communication and intellectual property protection. PUFs have been gaining considerable interest from both the academic and industrial communities because of their simplicity and stability. However, many recent studies have exposed PUFs to machine-learning (ML) modeling attacks. To improve the resilience of a system to general ML attacks instead of a specific ML technique, a common solution is to improve the complexity of the system. Structures, such as XOR-PUFs, can significantly increase the nonlinearity …


Robust And Uncertainty-Aware Image Classification Using Bayesian Vision Transformer Model, Fazlur Rahman Bin Karim Dec 2023

Robust And Uncertainty-Aware Image Classification Using Bayesian Vision Transformer Model, Fazlur Rahman Bin Karim

Theses and Dissertations

Transformer Neural Networks have emerged as the predominant architecture for addressing a wide range of Natural Language Processing (NLP) applications such as machine translation, speech recognition, sentiment analysis, text anomaly detection, etc. This noteworthy achievement of Transformer Neural Networks in the NLP field has sparked a growing interest in integrating and utilizing Transformer models in computer vision tasks. The Vision Transformer (ViT) model efficiently captures long-range dependencies by employing a self-attention mechanism to transform different image data into meaningful, significant representations. Recently, the Vision Transformer (ViT) has exhibited incredible performance in solving image classification problems by utilizing ViT models, thereby …


Enhanced Privacy-Enabled Face Recognition Using Κ-Identity Optimization, Ryan Karl Dec 2023

Enhanced Privacy-Enabled Face Recognition Using Κ-Identity Optimization, Ryan Karl

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Facial recognition is becoming more and more prevalent in the daily lives of the common person. Law enforcement utilizes facial recognition to find and track suspects. The newest smartphones have the ability to unlock using the user's face. Some door locks utilize facial recognition to allow correct users to enter restricted spaces. The list of applications that use facial recognition will only increase as hardware becomes more cost-effective and more computationally powerful. As this technology becomes more prevalent in our lives, it is important to understand and protect the data provided to these companies. Any data transmitted should be encrypted …


Diverse Impacts Of Commercial Ev Charging Load Infrastructure On Electric Power Grid, Antonio Avila Dec 2023

Diverse Impacts Of Commercial Ev Charging Load Infrastructure On Electric Power Grid, Antonio Avila

Open Access Theses & Dissertations

With the rising prominence of electric vehicles (EVs) in the transportation sector, this thesis delves into the critical nexus between commercial EVs, charging infrastructure, and their consequential impacts on the power grid. As commercial EVs, particularly medium and heavy-duty variants, gain traction as viable alternatives in the commercial transportation landscape, understanding the intricacies of their charging requirements becomes paramount. This thesis critically examines the technological and logistical dimensions of the charging infrastructure for supporting commercial EVs, evaluating the consequential implications on the power grid and proposing strategies for mitigation through the utilization of Distributed Energy Resources (DERs). In tandem with …