Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

University of Nebraska - Lincoln

Keyword
Publication Year
Publication

Articles 1 - 30 of 93

Full-Text Articles in Physical Sciences and Mathematics

Enhanced Privacy-Enabled Face Recognition Using Κ-Identity Optimization, Ryan Karl Dec 2023

Enhanced Privacy-Enabled Face Recognition Using Κ-Identity Optimization, Ryan Karl

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Facial recognition is becoming more and more prevalent in the daily lives of the common person. Law enforcement utilizes facial recognition to find and track suspects. The newest smartphones have the ability to unlock using the user's face. Some door locks utilize facial recognition to allow correct users to enter restricted spaces. The list of applications that use facial recognition will only increase as hardware becomes more cost-effective and more computationally powerful. As this technology becomes more prevalent in our lives, it is important to understand and protect the data provided to these companies. Any data transmitted should be encrypted …


Motif-Cluster: A Spatial Clustering Package For Repetitive Motif Binding Patterns, Mengyuan Zhou Nov 2023

Motif-Cluster: A Spatial Clustering Package For Repetitive Motif Binding Patterns, Mengyuan Zhou

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Previous efforts in using genome-wide analysis of transcription factor binding sites (TFBSs) have overlooked the importance of ranking potential significant regulatory regions, especially those with repetitive binding within a local region. Identifying these homogenous binding sites is critical because they have the potential to amplify the binding affinity and regulation activity of transcription factors, impacting gene expression and cellular functions. To address this issue, we developed an open-source tool Motif-Cluster that prioritizes and visualizes transcription factor regulatory regions by incorporating the idea of local motif clusters. Motif-Cluster can rank the significant transcription factor regulatory regions without the need for experimental …


Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian) Mar 2023

Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian)

Library Philosophy and Practice (e-journal)

Abstract

Purpose: The purpose of this research paper is to explore ChatGPT’s potential as an innovative designer tool for the future development of artificial intelligence. Specifically, this conceptual investigation aims to analyze ChatGPT’s capabilities as a tool for designing and developing near about human intelligent systems for futuristic used and developed in the field of Artificial Intelligence (AI). Also with the helps of this paper, researchers are analyzed the strengths and weaknesses of ChatGPT as a tool, and identify possible areas for improvement in its development and implementation. This investigation focused on the various features and functions of ChatGPT that …


Computer Engineering Education, Marilyn Wolf Nov 2022

Computer Engineering Education, Marilyn Wolf

CSE Conference and Workshop Papers

Computer engineering is a rapidly evolving discipline. How should we teach it to our students?

This virtual roundtable on computer engineering education was conducted in summer 2022 over a combination of email and virtual meetings. The panel considered what topics are of importance to the computer engineering curriculum, what distinguishes computer engineering from related disciplines, and how computer engineering concepts should be taught.


Parasol: Efficient Parallel Synthesis Of Large Model Spaces, Clay Stevens, Hamid Bagheri Sep 2022

Parasol: Efficient Parallel Synthesis Of Large Model Spaces, Clay Stevens, Hamid Bagheri

CSE Conference and Workshop Papers

Formal analysis is an invaluable tool for software engineers, yet state-of-the-art formal analysis techniques suffer from well-known limitations in terms of scalability. In particular, some software design domains—such as tradeoff analysis and security analysis—require systematic exploration of potentially huge model spaces, which further exacerbates the problem. Despite this present and urgent challenge, few techniques exist to support the systematic exploration of large model spaces. This paper introduces Parasol, an approach and accompanying tool suite, to improve the scalability of large-scale formal model space exploration. Parasol presents a novel parallel model space synthesis approach, backed with unsupervised learning to automatically derive …


Feature Analysis Of Indus Valley And Dravidian Language Scripts With Similarity Matrices, Sarat Sasank Barla, Sai Surya Sanjay Alamuru, Peter Revesz Aug 2022

Feature Analysis Of Indus Valley And Dravidian Language Scripts With Similarity Matrices, Sarat Sasank Barla, Sai Surya Sanjay Alamuru, Peter Revesz

CSE Conference and Workshop Papers

This paper investigates the similarity between the Indus Valley script and the Kannada, Malayalam, Tamil, and Telugu scripts that are used to write Dravidian languages. The closeness of these scripts is determined by applying a feature analysis of each sign of these scripts and creating similarity matrices that describe the similarity of any pair of signs from two different scripts. The feature list that we use for the analysis of these Dravidian language-related scripts includes six new features beyond the thirteen features that were used for the study of Minoan Linear A and related scripts by Revesz. These new features …


Combining Solution Reuse And Bound Tightening For Efficient Analysis Of Evolving Systems, Clay Stevens, Hamid Bagheri Jul 2022

Combining Solution Reuse And Bound Tightening For Efficient Analysis Of Evolving Systems, Clay Stevens, Hamid Bagheri

CSE Conference and Workshop Papers

Software engineers have long employed formal verification to ensure the safety and validity of their system designs. As the system changes—often via predictable, domain-specific operations—their models must also change, requiring system designers to repeatedly execute the same formal verification on similar system models. State-of-the-art formal verification techniques can be expensive at scale, the cost of which is multiplied by repeated analysis. This paper presents a novel analysis technique—implemented in a tool called SoRBoT—which can automatically determine domain-specific optimizations that can dramatically reduce the cost of repeatedly analyzing evolving systems. Different from all prior approaches, which focus on either tightening the …


Asymmetric Control Of Light At The Nanoscale, Christos Argyropoulos Jul 2022

Asymmetric Control Of Light At The Nanoscale, Christos Argyropoulos

Department of Electrical and Computer Engineering: Faculty Publications

Breaking reciprocity at the nanoscale can produce directional formation of images due to the asymmetric nonlinear optical response of subwavelength anisotropic resonators. The self-induced passive non-reciprocity has advantages compared to magnet or time modulation approaches and may impact both classical and quantum photonics.


Infrared Dielectric Functions And Brillouin Zone Center Phonons Of Α-Ga2O3 Compared To Α-Al2O3, Megan Stokey, Rafal Korlacki, Matthew J. Hilfiker, Sean Knight, Steffen Richter, Vanya Darakchieva, Riena Jinno, Yongjin Cho, Huili Grace Xing, Debdeep Jena, Yuichi Oshima, Kamruzzaman Khan, Elaheh Ahmadi, Mathias Schubert Jan 2022

Infrared Dielectric Functions And Brillouin Zone Center Phonons Of Α-Ga2O3 Compared To Α-Al2O3, Megan Stokey, Rafal Korlacki, Matthew J. Hilfiker, Sean Knight, Steffen Richter, Vanya Darakchieva, Riena Jinno, Yongjin Cho, Huili Grace Xing, Debdeep Jena, Yuichi Oshima, Kamruzzaman Khan, Elaheh Ahmadi, Mathias Schubert

Department of Electrical and Computer Engineering: Faculty Publications

We determine the anisotropic dielectric functions of rhombohedral α-Ga2O3 by far-infrared and infrared generalized spectroscopic ellipsometry and derive all transverse optical and longitudinal optical phonon mode frequencies and broadening parameters. We also determine the high-frequency and static dielectric constants. We perform density functional theory computations and determine the phonon dispersion for all branches in the Brillouin zone, and we derive all phonon mode parameters at the Brillouin zone center including Raman-active, infrared-active, and silent modes. Excellent agreement is obtained between our experimental and computation results as well as among all previously reported partial information from experiment …


Data Science Applied To Discover Ancient Minoan-Indus Valley Trade Routes Implied By Commonweight Measures, Peter Revesz Jan 2022

Data Science Applied To Discover Ancient Minoan-Indus Valley Trade Routes Implied By Commonweight Measures, Peter Revesz

CSE Conference and Workshop Papers

This paper applies data mining of weight measures to discover possible long-distance trade routes among Bronze Age civilizations from the Mediterranean area to India. As a result, a new northern route via the Black Sea is discovered between the Minoan and the Indus Valley civilizations. This discovery enhances the growing set of evidence for a strong and vibrant connection among Bronze Age civilizations.


Risk-Based Machine Learning Approaches For Probabilistic Transient Stability, Umair Shahzad Dec 2021

Risk-Based Machine Learning Approaches For Probabilistic Transient Stability, Umair Shahzad

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Power systems are getting more complex than ever and are consequently operating close to their limit of stability. Moreover, with the increasing demand of renewable wind generation, and the requirement to maintain a secure power system, the importance of transient stability cannot be overestimated. Considering its significance in power system security, it is important to propose a different approach for enhancing the transient stability, considering uncertainties. Current deterministic industry practices of transient stability assessment ignore the probabilistic nature of variables (fault type, fault location, fault clearing time, etc.). These approaches typically provide a conservative criterion and can result in expensive …


High-Frequency And Below Bandgap Anisotropic Dielectric Constants In Α-(AlXGa1-X)2O3 (0≤X≤1), Matthew Hilfiker, Ufuk Kilic, Megan Stokey, Riena Jinno, Yongjin Cho, Huili Grace Xing, Debdeep Jena, Rafal Korlacki, Mathias Schubert Sep 2021

High-Frequency And Below Bandgap Anisotropic Dielectric Constants In Α-(AlXGa1-X)2O3 (0≤X≤1), Matthew Hilfiker, Ufuk Kilic, Megan Stokey, Riena Jinno, Yongjin Cho, Huili Grace Xing, Debdeep Jena, Rafal Korlacki, Mathias Schubert

Department of Electrical and Computer Engineering: Faculty Publications

A Mueller matrix spectroscopic ellipsometry approach was used to investigate the anisotropic dielectric constants of corundum α-(AlxGa1-x)2O3 thin films in their below bandgap spectral regions. The sample set was epitaxially grown using plasma-assisted molecular beam epitaxy on m-plane sapphire. The spectroscopic ellipsometry measurements were performed at multiple azimuthal angles to resolve the uniaxial dielectric properties. A Cauchy dispersion model was applied, and high-frequency dielectric constants are determined for polarization perpendicular (ε∞,⟂) and parallel (ε∞,∥) to the thin film c-axis. The optical birefringence is negative throughout the …


Optical Phonon Modes, Static And High-Frequency Dielectric Constants, And Effective Electron Mass Parameter In Cubic In2O3, Megan Stokey, Rafal Korlacki, Sean Knight, Alexander Ruder, Matthew J. Hilfiker, Zbigniew Galazka, Klaus Irmscher, Yuxuan Zhang, Hongping Zhao, Vanya Darakchieva, Mathias Schubert Jun 2021

Optical Phonon Modes, Static And High-Frequency Dielectric Constants, And Effective Electron Mass Parameter In Cubic In2O3, Megan Stokey, Rafal Korlacki, Sean Knight, Alexander Ruder, Matthew J. Hilfiker, Zbigniew Galazka, Klaus Irmscher, Yuxuan Zhang, Hongping Zhao, Vanya Darakchieva, Mathias Schubert

Department of Electrical and Computer Engineering: Faculty Publications

A complete set of all optical phonon modes predicted by symmetry for bixbyite structure indium oxide is reported here from a combination of far-infrared and infrared spectroscopic ellipsometry, as well as first principles calculations. Dielectric function spectra measured on high quality, marginally electrically conductive melt grown single bulk crystals are obtained on a wavelength-by-wavelength (also known as point-by-point) basis and by numerical reduction of a subtle free charge carrier Drude model contribution. A four-parameter semi-quantum model is applied to determine all 16 pairs of infrared-active transverse and longitudinal optical phonon modes, including the high-frequency dielectric constant, ε=4.05±0.05. The …


Zinc Gallate Spinel Dielectric Function, Band-To-Band Transitions, And Γ-Point Effective Mass Parameters, Matthew J. Hilfiker, Megan Stokey, Rafal Korlacki, Ufuk Kilic, Zbigniew Galazka, Klaus Irmscher, Stefan Zollner, Mathias Schubert Mar 2021

Zinc Gallate Spinel Dielectric Function, Band-To-Band Transitions, And Γ-Point Effective Mass Parameters, Matthew J. Hilfiker, Megan Stokey, Rafal Korlacki, Ufuk Kilic, Zbigniew Galazka, Klaus Irmscher, Stefan Zollner, Mathias Schubert

Department of Electrical and Computer Engineering: Faculty Publications

We determine the dielectric function of the emerging ultrawide bandgap semiconductor ZnGa2O4 from the near-infrared (0.75 eV) into the vacuum ultraviolet (8.5 eV) spectral regions using spectroscopic ellipsometry on high quality single crystal substrates. We perform density functional theory calculations and discuss the band structure and the Brillouin zone Γ-point band-to-band transition energies, their transition matrix elements, and effective band mass parameters. We find an isotropic effective mass parameter (0.24me) at the bottom of the Γ-point conduction band, which equals the lowest valence band effective mass parameter at the top of the highly anisotropic …


Exploring The Efficiency Of Self-Organizing Software Teams With Game Theory, Clay Stevens, Jared Soundy, Hau Chan Feb 2021

Exploring The Efficiency Of Self-Organizing Software Teams With Game Theory, Clay Stevens, Jared Soundy, Hau Chan

CSE Conference and Workshop Papers

Over the last two decades, software development has moved away from centralized, plan-based management toward agile methodologies such as Scrum. Agile methodologies are founded on a shared set of core principles, including self-organizing software development teams. Such teams are promoted as a way to increase both developer productivity and team morale, which is echoed by academic research. However, recent works on agile neglect to consider strategic behavior among developers, particularly during task assignment–one of the primary functions of a self-organizing team. This paper argues that self-organizing software teams could be readily modeled using game theory, providing insight into how agile …


Plasmonic Waveguides To Enhance Quantum Electrodynamic Phenomena At The Nanoscale, Ying Li, Christos Argyropoulos Feb 2021

Plasmonic Waveguides To Enhance Quantum Electrodynamic Phenomena At The Nanoscale, Ying Li, Christos Argyropoulos

Department of Electrical and Computer Engineering: Faculty Publications

The emerging field of plasmonics can lead to enhanced light-matter interactions at extremely nanoscale regions. Plasmonic (metallic) devices promise to efficiently control both classical and quantum properties of light. Plasmonic waveguides are usually used to excite confined electromagnetic modes at the nanoscale that can strongly interact with matter. The analysis of these nanowaveguides exhibits similarities with their low frequency microwave counterparts. In this article, we review ways to study plasmonic nanostructures coupled to quantum optical emitters from a classical electromagnetic perspective. These quantum emitters are mainly used to generate single-photon quantum light that can be employed as a quantum bit …


Anisotropic Dielectric Functions, Band-To-Band Transitions, And Critical Points In Α-Ga2O3, Matthew J. Hilfiker, Rafal Korlacki, Riena Jinno, Yongjin Cho, Huili Grace Xing, Debdeep Jena, Ufuk Kilic, Megan Stokey, Mathias Schubert Feb 2021

Anisotropic Dielectric Functions, Band-To-Band Transitions, And Critical Points In Α-Ga2O3, Matthew J. Hilfiker, Rafal Korlacki, Riena Jinno, Yongjin Cho, Huili Grace Xing, Debdeep Jena, Ufuk Kilic, Megan Stokey, Mathias Schubert

Department of Electrical and Computer Engineering: Faculty Publications

We use a combined generalized spectroscopic ellipsometry and density functional theory approach to determine and analyze the anisotropic dielectric functions of an α-Ga2O3 thin film. The sample is grown epitaxially by plasma-assisted molecular beam epitaxy on m-plane sapphire. Generalized spectroscopic ellipsometry data from multiple sample azimuths in the spectral range from 0.73 eV to 8.75 eV are simultaneously analyzed. Density functional theory is used to calculate the valence and conduction band structure. We identify, for the indirect-bandgap material, two direct band-to-band transitions with M0-type van Hove singularities for polarization perpendicular to the c axis, …


Game-Theoretic Analysis Of Effort Allocation Of Contributors To Public Projects, Jared Soundy, Chenhao Wang, Clay Stevens, Hau Chan Jan 2021

Game-Theoretic Analysis Of Effort Allocation Of Contributors To Public Projects, Jared Soundy, Chenhao Wang, Clay Stevens, Hau Chan

CSE Conference and Workshop Papers

Public projects can succeed or fail for many reasons such as the feasibility of the original goal and coordination among contributors. One major reason for failure is that insufficient work leaves the project partially completed. For certain types of projects anything short of full completion is a failure (e.g., feature request on software projects in GitHub). Therefore, project success relies heavily on individuals allocating sufficient effort. When there are multiple public projects, each contributor needs to make decisions to best allocate his/her limited effort (e.g., time) to projects while considering the effort allocation decisions of other strategic contributors and his/her …


Strain And Stress Relationships For Optical Phonon Modes In Monoclinic Crystals With Β-Ga2O3 As An Example, Rafal Korlacki, Megan Stokey, Alyssa Lynn Mock, Sean Knight, Alexis Papamichail, Vanya Darakchieva, Mathias Schubert Nov 2020

Strain And Stress Relationships For Optical Phonon Modes In Monoclinic Crystals With Β-Ga2O3 As An Example, Rafal Korlacki, Megan Stokey, Alyssa Lynn Mock, Sean Knight, Alexis Papamichail, Vanya Darakchieva, Mathias Schubert

Department of Electrical and Computer Engineering: Faculty Publications

Strain-stress relationships for physical properties are of interest for heteroepitaxial material systems, where strain and stress are inherent due to thermal expansion and lattice mismatch. We report linear perturbation theory strain and stress relationships for optical phonon modes in monoclinic crystals for strain and stress situations which maintain the monoclinic symmetry of the crystal. By using symmetry group analysis and phonon frequencies obtained under various deformation scenarios from density-functional perturbation theory calculations on β-Ga2O3, we obtain four strain and four stress potential parameters for each phonon mode. We demonstrate that these parameters are sufficient to …


Brillouin Zone Center Phonon Modes In Znga2O4, Megan Stokey, Rafal Korlacki, Sean Knight, Matthew J. Hilfiker, Zbigniew Galazka, Klaus Irmscher, Vanya Darakchieva, Mathias Schubert Aug 2020

Brillouin Zone Center Phonon Modes In Znga2O4, Megan Stokey, Rafal Korlacki, Sean Knight, Matthew J. Hilfiker, Zbigniew Galazka, Klaus Irmscher, Vanya Darakchieva, Mathias Schubert

Department of Electrical and Computer Engineering: Faculty Publications

Infrared-active lattice mode properties of melt-grown high-quality single bulk crystals of ZnGa2O4 are investigated by combined spectroscopic ellipsometry and density functional theory computation analysis. The normal spinel structure crystals are measured by spectroscopic ellipsometry at room temperature in the range of 100 cm–1–1200 cm–1. The complex-valued dielectric function is determined from a wavenumber-by-wavenumber approach, which is then analyzed by the four-parameter semi-quantum model dielectric function approach augmented by impurity mode contributions. We determine four infrared-active transverse and longitudinal optical mode pairs, five localized impurity mode pairs, and the high frequency dielectric constant. All …


Free Charge Carrier Properties In Two-Dimensional Materials And Monoclinic Oxides Studied By Optical Hall Effect, Sean Knight Aug 2020

Free Charge Carrier Properties In Two-Dimensional Materials And Monoclinic Oxides Studied By Optical Hall Effect, Sean Knight

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this dissertation, optical Hall effect (OHE) measurements are used to determine the free charge carrier properties of important two-dimensional materials and monoclinic oxides. Two-dimensional material systems have proven useful in high-frequency electronic devices due to their unique properties, such as high mobility, which arise from their two-dimensional nature. Monoclinic oxides exhibit many desirable characteristics, for example low-crystal symmetry which could lead to anisotropic carrier properties. Here, single-crystal monoclinic gallium oxide, an AlInN/GaN-based high-electron-mobility transistor (HEMT) structure, and epitaxial graphene are studied as examples. To characterize these material systems, the OHE measurement technique is employed. The OHE is a physical …


A Novel Path Loss Forecast Model To Support Digital Twins For High Frequency Communications Networks, James Marvin Taylor Jr Jul 2020

A Novel Path Loss Forecast Model To Support Digital Twins For High Frequency Communications Networks, James Marvin Taylor Jr

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

The need for long-distance High Frequency (HF) communications in the 3-30 MHz frequency range seemed to diminish at the end of the 20th century with the advent of space-based communications and the spread of fiber optic-connected digital networks. Renewed interest in HF has emerged as an enabler for operations in austere locations and for its ability to serve as a redundant link when space-based and terrestrial communication channels fail. Communications system designers can create a “digital twin” system to explore the operational advantages and constraints of the new capability. Existing wireless channel models can adequately simulate communication channel conditions with …


Reducing Run-Time Adaptation Space Via Analysis Of Possible Utility Bounds, Clay Stevens, Hamid Bagheri May 2020

Reducing Run-Time Adaptation Space Via Analysis Of Possible Utility Bounds, Clay Stevens, Hamid Bagheri

CSE Conference and Workshop Papers

Self-adaptive systems often employ dynamic programming or similar techniques to select optimal adaptations at run-time. These techniques suffer from the “curse of dimensionality", increasing the cost of run-time adaptation decisions. We propose a novel approach that improves upon the state-of-the-art proactive self-adaptation techniques to reduce the number of possible adaptations that need be considered for each run-time adaptation decision. The approach, realized in a tool called Thallium, employs a combination of automated formal modeling techniques to (i) analyze a structural model of the system showing which configurations are reachable from other configurations and (ii) compute the utility that can be …


The Impact Of Pev User Charging Behavior In Building Public Charging Infrastructure, Ahmad Almaghrebi Apr 2020

The Impact Of Pev User Charging Behavior In Building Public Charging Infrastructure, Ahmad Almaghrebi

Durham School of Architectural Engineering and Construction: Dissertations, Thesis, and Student Research

Plug-in electric vehicles (PEVs) play a significant role in the development of green cities since they generate less pollution than conventional vehicles. To promote PEV adoption and mitigate range anxiety, charging infrastructure should be deployed at strategic locations that are readily accessible to the public. Nebraska is working on the expansion of charging infrastructure around the state; however, stakeholders face several difficulties in trying to minimize irregular charging behaviors. Most electric vehicle users plug in and leave their vehicles for an extended time at public parking lots designated for PEVs. Some users even leave their vehicles for longer than 24 …


Infrared-Active Phonon Modes In Single-Crystal Thorium Dioxide And Uranium Dioxide, Sean Knight, Rafal Korlacki, Christina Dugan, James C. Petrosky, Alyssa Lynn Mock, Peter A. Dowben, J. Matthew Mann, Martin M. Kimani, Mathias Schubert Mar 2020

Infrared-Active Phonon Modes In Single-Crystal Thorium Dioxide And Uranium Dioxide, Sean Knight, Rafal Korlacki, Christina Dugan, James C. Petrosky, Alyssa Lynn Mock, Peter A. Dowben, J. Matthew Mann, Martin M. Kimani, Mathias Schubert

Department of Electrical and Computer Engineering: Faculty Publications

The infrared-active phonon modes, in single-crystal samples of thorium dioxide (ThO2) and uranium dioxide (UO2), were investigated using spectroscopic ellipsometry and compared with density functional theory. Both ThO2 and UO2 are found to have one infrared-active phonon mode pair [consisting of one transverse optic (TO) and one associated longitudinal optic (LO) mode], which is responsible for the dominant features in the ellipsometric data. At room temperature, our results for the mode pair’s resonant frequencies and broadening parameters are comparable with previous reflectance spectroscopy characterizations and density functional theory predictions. For ThO2, our …


Power-Over-Tether Uas Leveraged For Nearly Indefinite Meteorological Data Acquisition In The Platte River Basin, Daniel Rico, Carrick Detweiler, Francisco Munoz-Arriola Jan 2020

Power-Over-Tether Uas Leveraged For Nearly Indefinite Meteorological Data Acquisition In The Platte River Basin, Daniel Rico, Carrick Detweiler, Francisco Munoz-Arriola

CSE Conference and Workshop Papers

The integration of unmanned aerial systems (UASs) has increased in the field of agriculture. These systems can provide data that was previously difficult to obtain to help increase efficiency and production. Typical commercial off the shelf (COTS) UASs have significant limitations in the form of small payloads, and short flight times which inhibit their ability to provide significant quantities of useful data. We present the development of a novel power-over-tether UAS that leverages the physical presence of the tether to integrate sensors at multiple altitudes along the tether. The UAS can acquire data nearly indefinitely to sense atmospheric conditions and …


Dielectric Function Tensor (1.5 Ev To 9.0 Ev), Anisotropy, And Band To Band Transitions Of Monoclinic Β-(AlXGa1–X)2O3 (X ≤ 0.21) Films, Matthew Hilfiker, Ufuk Kilic, Alyssa Mock, Vanya Darakchieva, Sean Knight, Rafal Korlacki, Akhil Mauze, Yuewei Zhang, James Speck, Mathias Schubert Jun 2019

Dielectric Function Tensor (1.5 Ev To 9.0 Ev), Anisotropy, And Band To Band Transitions Of Monoclinic Β-(AlXGa1–X)2O3 (X ≤ 0.21) Films, Matthew Hilfiker, Ufuk Kilic, Alyssa Mock, Vanya Darakchieva, Sean Knight, Rafal Korlacki, Akhil Mauze, Yuewei Zhang, James Speck, Mathias Schubert

Department of Electrical and Computer Engineering: Faculty Publications

A set of monoclinic β-(AlxGa1–x)2O3 films coherently grown by plasma-assisted molecular beam epitaxy onto (010)-oriented β-Ga2O3 substrates for compositions x ≤ 0.21 is investigated by generalized spectroscopic ellipsometry at room temperature in the spectral range of 1.5 eV–9.0 eV. We present the composition dependence of the excitonic and band to band transition energy parameters using a previously described eigendielectric summation approach for β-Ga2O3 from the study by Mock et al. All energies shift to a shorter wavelength with the increasing Al content in …


Feasibility And Security Analysis Of Wideband Ultrasonic Radio For Smart Home Applications, Qi Xia Apr 2019

Feasibility And Security Analysis Of Wideband Ultrasonic Radio For Smart Home Applications, Qi Xia

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Smart home Internet-of-Things (IoT) accompanied by smart home apps has witnessed tremendous growth in the past few years. Yet, the security and privacy of the smart home IoT devices and apps have raised serious concerns, as they are getting increasingly complicated each day, expected to store and exchange extremely sensitive personal data, always on and connected, and commonly exposed to any users in a sensitive environment. Nowadays wireless smart home IoT devices rely on electromagnetic wave-based radio-frequency (RF) technology to establish fast and reliable quality network connections. However, RF has its limitations that can negatively affect the smart home user …


Electromagnon Excitation In Cupric Oxide Measured By Fabry-Pérot Enhanced Terahertz Mueller Matrix Ellipsometry, Sean Knight, Dharmalingam Prabhakaran, Christian Binek, Mathias Schubert Feb 2019

Electromagnon Excitation In Cupric Oxide Measured By Fabry-Pérot Enhanced Terahertz Mueller Matrix Ellipsometry, Sean Knight, Dharmalingam Prabhakaran, Christian Binek, Mathias Schubert

Christian Binek Publications

Here we present the use of Fabry-Pérot enhanced terahertz (THz) Mueller matrix ellipsometry to measure an electromagnon excitation in monoclinic cupric oxide (CuO). As a magnetically induced ferroelectric multiferroic, CuO exhibits coupling between electric and magnetic order. This gives rise to special quasiparticle excitations at THz frequencies called electromagnons. In order to measure the electromagnons in CuO, we exploit single-crystal CuO as a THz Fabry-Pérot cavity to resonantly enhance the excitation’s signature. This enhancement technique enables the complex index of refraction to be extracted. We observe a peak in the absorption coefficient near 0.705 THz and 215 K, which corresponds …


Phonon Order And Reststrahlen Bands Of Polar Vibrations In Crystals With Monoclinic Symmetry, Mathias Schubert, Alyssa Mock, Rafal Korlacki, Vanya Darakchieva Jan 2019

Phonon Order And Reststrahlen Bands Of Polar Vibrations In Crystals With Monoclinic Symmetry, Mathias Schubert, Alyssa Mock, Rafal Korlacki, Vanya Darakchieva

Department of Electrical and Computer Engineering: Faculty Publications

In this Rapid Communication, we present the order of the phonon modes and the appearance of the reststrahlen bands for monoclinic symmetry materials with polar lattice vibrations. Phonon modes occur in associated pairs of transverse and longitudinal optical modes, and pairs either belong to inner or outer phonon modes. Inner modes are nested within outer modes. Outer modes cause polarization-dependent reststrahlen bands. Inner modes cause polarization-independent reststrahlen bands. The directional limiting frequencies within the Born-Huang approach are bound to within outer mode frequency regions not occupied by inner mode pairs. Hence, an unusual phonon mode order can occur where both …