Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1561 - 1590 of 8890

Full-Text Articles in Physical Sciences and Mathematics

Extracting Range Data From Images Using Focus Error, Erik M. Madden Mar 2020

Extracting Range Data From Images Using Focus Error, Erik M. Madden

Theses and Dissertations

Air-to-air refueling (AAR) has become a staple when performing long missions with aircraft. With modern technology, however, people have begun to research how to perform this task autonomously. Automated air-to-air refueling (A3R) is this exact concept. Combining many different systems, the idea is to allow computers on the aircraft to link up via the refueling boom, refuel, and detach before resuming pilot control. This document lays out one of the systems that is needed to perform A3R, namely, the system that extracts range data. While stereo cameras perform such tasks, there is interest in finding other ways of accomplishing the …


Comparison Of Visual Simultaneous Localization And Mapping Methods For Fixed-Wing Aircraft Using Slambench2, Patrick R. Latcham Mar 2020

Comparison Of Visual Simultaneous Localization And Mapping Methods For Fixed-Wing Aircraft Using Slambench2, Patrick R. Latcham

Theses and Dissertations

Visual Simultaneous Localization and Mapping (VSLAM) algorithms have evolved rapidly in the last few years, however there has been little research evaluating current algorithm's effectiveness and limitations when applied to tracking the position of a fixed-wing aerial vehicle. This research looks to evaluate current monocular VSLAM algorithms' performance on aerial vehicle datasets using the SLAMBench2 benchmarking suite. The algorithms tested are MonoSLAM, PTAM, OKVIS, LSDSLAM, ORB-SLAM2, and SVO, all of which are built into the SLAMBench2 software. The algorithms' performance is evaluated using simulated datasets generated in the AftrBurner Engine. The datasets were designed to test the quality of each …


Near Real-Time Zigbee Device Discrimination Using Cb-Dna Features, Yousuke Z. Matsui Mar 2020

Near Real-Time Zigbee Device Discrimination Using Cb-Dna Features, Yousuke Z. Matsui

Theses and Dissertations

Currently, Low-Rate Wireless Personal Area Networks (LR-WPAN) based on the Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard are at risk due to open-source tools which allow bad actors to exploit unauthorized network access through various cyberattacks by falsifying bit-level credentials. This research investigates implementing a Radio Frequency (RF) air monitor to perform Near RealTime (NRT) discrimination of Zigbee devices using the IEEE 802.15.4 standard. The air monitor employed a Multiple Discriminant Analysis/Euclidean Distance classifier to discriminate Zigbee devices based upon Constellation-Based Distinct Native Attribute (CB-DNA) fingerprints. Through the use of CB-DNA fingerprints, Physical Layer (PHY) characteristics unique to …


One-Dimensional Multi-Frame Blind Deconvolution Using Astronomical Data For Spatially Separable Objects, Marc R. Brown Mar 2020

One-Dimensional Multi-Frame Blind Deconvolution Using Astronomical Data For Spatially Separable Objects, Marc R. Brown

Theses and Dissertations

Blind deconvolution is used to complete missions to detect adversary assets in space and to defend the nation's assets. A new algorithm was developed to perform blind deconvolution for objects that are spatially separable using multiple frames of data. This new one-dimensional approach uses the expectation-maximization algorithm to blindly deconvolve spatially separable objects. This object separation reduces the size of the object matrix from an NxN matrix to two singular vectors of length N. With limited knowledge of the object and point spread function the one-dimensional algorithm successfully deconvolved the objects in both simulated and laboratory data.


Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee Mar 2020

Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee

Theses and Dissertations

Remotely piloted aircraft (RPAs) cannot currently refuel during flight because the latency between the pilot and the aircraft is too great to safely perform aerial refueling maneuvers. However, an AAR system removes this limitation by allowing the tanker to directly control the RP A. The tanker quickly finding the relative position and orientation (pose) of the approaching aircraft is the first step to create an AAR system. Previous work at AFIT demonstrates that stereo camera systems provide robust pose estimation capability. This thesis first extends that work by examining the effects of the cameras' resolution on the quality of pose …


Learning In The Machine: To Share Or Not To Share?, Jordan Ott, Erik Linstead, Nicholas Lahaye, Pierre Baldi Mar 2020

Learning In The Machine: To Share Or Not To Share?, Jordan Ott, Erik Linstead, Nicholas Lahaye, Pierre Baldi

Engineering Faculty Articles and Research

Weight-sharing is one of the pillars behind Convolutional Neural Networks and their successes. However, in physical neural systems such as the brain, weight-sharing is implausible. This discrepancy raises the fundamental question of whether weight-sharing is necessary. If so, to which degree of precision? If not, what are the alternatives? The goal of this study is to investigate these questions, primarily through simulations where the weight-sharing assumption is relaxed. Taking inspiration from neural circuitry, we explore the use of Free Convolutional Networks and neurons with variable connection patterns. Using Free Convolutional Networks, we show that while weight-sharing is a pragmatic optimization …


Maximizing Accuracy Through Stereo Vision Camera Positioning For Automated Aerial Refueling, Kirill A. Sarantsev Mar 2020

Maximizing Accuracy Through Stereo Vision Camera Positioning For Automated Aerial Refueling, Kirill A. Sarantsev

Theses and Dissertations

Aerial refueling is a key component of the U.S. Air Force strategic arsenal. When two aircraft interact in an aerial refueling operation, the accuracy of relative navigation estimates are critical for the safety, accuracy and success of the mission. Automated Aerial Refueling (AAR) looks to improve the refueling process by creating a more effective system and allowing for Unmanned Aerial Vehicle(s) (UAV) support. This paper considers a cooperative aerial refueling scenario where stereo cameras are used on the tanker to direct a \boom" (a large, long structure through which the fuel will ow) into a port on the receiver aircraft. …


Fiber-Optic Micro-Probes For Measuring Acidity Level, Temperature, And Antigens, Yinfa Ma, Honglan Shi, Qingbo Yang, Hai Xiao Mar 2020

Fiber-Optic Micro-Probes For Measuring Acidity Level, Temperature, And Antigens, Yinfa Ma, Honglan Shi, Qingbo Yang, Hai Xiao

Chemistry Faculty Research & Creative Works

A pH micro-probe, a temperature micro-probe, and an immuno-based micro-probe each include a shaft for transmuting an input light signal and a tip for inserting into a cell or other substance for measuring pH, temperature, and/or antigens. The pH micro-probe and the temperature micro-probe each include a luminescent material positioned on the tip of the micro-probe. The light signal excites the luminescent material so that the luminescent material emits a luminescent light signal. The luminescent light signal has a property value dependent on the pH or temperature being measured and reflects back through the shaft for being measured by a …


Syllabus Ee330 Electromagnetics, Nicholas Madamopoulos Mar 2020

Syllabus Ee330 Electromagnetics, Nicholas Madamopoulos

Open Educational Resources

Concepts covered in the undergraduate electrical engineering class of electromagnetics


Infrared-Active Phonon Modes In Single-Crystal Thorium Dioxide And Uranium Dioxide, Sean Knight, Rafal Korlacki, Christina Dugan, James C. Petrosky, Alyssa Lynn Mock, Peter A. Dowben, J. Matthew Mann, Martin M. Kimani, Mathias Schubert Mar 2020

Infrared-Active Phonon Modes In Single-Crystal Thorium Dioxide And Uranium Dioxide, Sean Knight, Rafal Korlacki, Christina Dugan, James C. Petrosky, Alyssa Lynn Mock, Peter A. Dowben, J. Matthew Mann, Martin M. Kimani, Mathias Schubert

Department of Electrical and Computer Engineering: Faculty Publications

The infrared-active phonon modes, in single-crystal samples of thorium dioxide (ThO2) and uranium dioxide (UO2), were investigated using spectroscopic ellipsometry and compared with density functional theory. Both ThO2 and UO2 are found to have one infrared-active phonon mode pair [consisting of one transverse optic (TO) and one associated longitudinal optic (LO) mode], which is responsible for the dominant features in the ellipsometric data. At room temperature, our results for the mode pair’s resonant frequencies and broadening parameters are comparable with previous reflectance spectroscopy characterizations and density functional theory predictions. For ThO2, our …


Deal: Differentially Private Auction For Blockchain Based Microgrids Energy Trading, Muneeb Ul Hassan, Mubashir Husain Rehmani, Jinjun Chen Mar 2020

Deal: Differentially Private Auction For Blockchain Based Microgrids Energy Trading, Muneeb Ul Hassan, Mubashir Husain Rehmani, Jinjun Chen

Publications

Modern smart homes are being equipped with certain renewable energy resources that can produce their own electric energy. From time to time, these smart homes or microgrids are also capable of supplying energy to other houses, buildings, or energy grid in the time of available self-produced renewable energy. Therefore, researches have been carried out to develop optimal trading strategies, and many recent technologies are also being used in combination with microgrids. One such technology is blockchain, which works over decentralized distributed ledger. In this paper, we develop a blockchain based approach for microgrid energy auction. To make this auction more …


Differential Privacy Techniques For Cyber Physical Systems: A Survey, Muneeb Ul Hassan, Mubashir Husain Rehmani, Jinjun Chen Mar 2020

Differential Privacy Techniques For Cyber Physical Systems: A Survey, Muneeb Ul Hassan, Mubashir Husain Rehmani, Jinjun Chen

Publications

Modern cyber physical systems (CPSs) has widely being used in our daily lives because of development of information and communication technologies (ICT).With the provision of CPSs, the security and privacy threats associated to these systems are also increasing. Passive attacks are being used by intruders to get access to private information of CPSs. In order to make CPSs data more secure, certain privacy preservation strategies such as encryption, and k-anonymity have been presented in the past. However, with the advances in CPSs architecture, these techniques also need certain modifications. Meanwhile, differential privacy emerged as an efficient technique to protect CPSs …


Simulation Of Sporadic-E Parameters Using Phase Screen Method, Daniel W. Stambovsky Mar 2020

Simulation Of Sporadic-E Parameters Using Phase Screen Method, Daniel W. Stambovsky

Theses and Dissertations

A phase screen simulation experiment is designed and implemented to model radio occultation through sporadic-E ionospheric disturbances between a GPS transmitter operating at the L1 frequency and a second receiving satellite in low earth orbit (LEO). Simulations were made to test the linear relationship between plasma intensity and scintillation S4 index both posited (Arras and Wickert, 2018) and contended (Gooch et al., 2020) in previous literature. Results brought into question both the linear relationship and the use of S4 as a whole and an alternate metric was sought.


Use Of Lidar In Automated Aerial Refueling To Improve Stereo Vision Systems, Michael R. Crowl Mar 2020

Use Of Lidar In Automated Aerial Refueling To Improve Stereo Vision Systems, Michael R. Crowl

Theses and Dissertations

The United States Air Force (USAF) executes five Core Missions, four of which depend on increased aircraft range. To better achieve global strike and reconnaissance, unmanned aerial vehicles (UAVs) require aerial refueling for extended missions. However, current aerial refueling capabilities are limited to manned aircraft due to technical difficulties to refuel UAVs mid-flight. The latency between a UAV operator and the UAV is too large to adequately respond for such an operation. To overcome this limitation, the USAF wants to create a capability to guide the refueling boom into the refueling receptacle. This research explores the use of light detection …


Detection Of Reconnection Signatures In Solar Flares, Taylor R. Whitney Mar 2020

Detection Of Reconnection Signatures In Solar Flares, Taylor R. Whitney

Theses and Dissertations

Solar flare forecasting is limited by the current understanding of mechanisms that govern magnetic reconnection, the main physical phenomenon associated with these events. As a result, forecasting relies mainly on climatological correlations to historical events rather than the underlying physics principles. Solar physics models place the neutral point of the reconnection event in the solar corona. Correspondingly, studies of photospheric magnetic fields indicate changes during solar flares -- particularly in relation to the field helicity -- on the solar surface as a result of the associated magnetic reconnection. This study utilizes data from the Solar Dynamics Observatory (SDO) Helioseismic and …


Synthesizing General Electromagnetic Partially Coherent Sources From Random, Correlated Complex Screens, Milo W. Hyde Iv Mar 2020

Synthesizing General Electromagnetic Partially Coherent Sources From Random, Correlated Complex Screens, Milo W. Hyde Iv

Faculty Publications

We present a method to generate any genuine electromagnetic partially coherent source (PCS) from correlated, stochastic complex screens. The method described here can be directly implemented on existing spatial-light-modulator-based vector beam generators and can be used in any application which utilizes electromagnetic PCSs. Our method is based on the genuine cross-spectral density matrix criterion. Applying that criterion, we show that stochastic vector field realizations (corresponding to a desired electromagnetic PCS) can be generated by passing correlated Gaussian random numbers through “filters” with space-variant transfer functions. We include step-by-step instructions on how to generate the electromagnetic PCS field realizations. As an …


Optimizing Llrf Parameters In The Electron-Ion Collider, William M. Bjorndahl Mar 2020

Optimizing Llrf Parameters In The Electron-Ion Collider, William M. Bjorndahl

Physics

To improve particle interaction in the future Electron-Ion Collider (EIC), we investigated different feedback implementations to control the accelerating voltage and examined the power and beam phase for each instance. Using MATLAB, we studied three feedback mechanisms: Direct, One Turn, and Feedforward. Enacting feedforward yielded the best performance. To minimize the klystron power consumption, we analyzed different Low-Level Radio Frequency (LLRF) parameters such as detuning. Combining theory and simulated results, we found the optimal detuning value that minimizes klystron power consumption.


Measurement Of The 160Gd(P,N)160Tb Excitation Function From 4 18 Mev, Using A Stacked Foil Technique, Ryan K. Chapman Mar 2020

Measurement Of The 160Gd(P,N)160Tb Excitation Function From 4 18 Mev, Using A Stacked Foil Technique, Ryan K. Chapman

Theses and Dissertations

A stack of thin Gd, Ti, and Cu foils were irradiated with an 18 MeV proton beam at Lawrence-Berkeley National Laboratory's 88-Inch Cyclotron to investigate the 160Gd(p,n)160Tb nuclear reaction for nuclear forensics applications. This experiment will improve knowledge of 160Tb production rates, allowing 160Tb to be efficiently created in a foil stack consisting of other proton induced isotopes for forensics applications. A set of 15 measured cross sections between 4-18 MeV for 160Gd(p,n)160Tb were obtained using a stacked foil technique. The foil stack consisted of one stainless steel, one iron, fifteen gadolinium, …


Investigating The Solution Properties Of Population Model Of Cross-Diffusion Model With Double Nonlinearity And With Variable Density, Dildora Kabilovna Muhamediyeva Feb 2020

Investigating The Solution Properties Of Population Model Of Cross-Diffusion Model With Double Nonlinearity And With Variable Density, Dildora Kabilovna Muhamediyeva

Chemical Technology, Control and Management

The models of two competing populations with double nonlinear diffusion and three types of functional dependencies are considered. The first dependence corresponds to the Malthusian type, the second to the Verhühlst type (logistic population), and the third to Olli-type populations. A common element of this kind of description is the presence of a linear source. Nonlinear sinks are also present in descriptions of populations of the Verhulst and Ollie type. Suitable initial approximations for a rapidly converging iterative process are proposed. Based on a self-similar analysis and comparison of the solutions of the Cauchy problem in the domain for an …


Research Progresses In Ni-Co-Mn/Al Ternary Concentration Gradient Cathode Materials For Li-Ion Batteries, Chun-Fang Zhang, Wen-Gao Zhao, Shi-Yao Zheng, Yi-Xiao Li, Zheng-Liang Gong, Zhong-Ru Zhang, Yong Yang Feb 2020

Research Progresses In Ni-Co-Mn/Al Ternary Concentration Gradient Cathode Materials For Li-Ion Batteries, Chun-Fang Zhang, Wen-Gao Zhao, Shi-Yao Zheng, Yi-Xiao Li, Zheng-Liang Gong, Zhong-Ru Zhang, Yong Yang

Journal of Electrochemistry

Nickel-rich ternary materials with large reversible capacity as well as high operating voltage are considered as the most promising candidate for next generation lithium-ion batteries (LIBs). However, the inferior cycle stability and thermal stability have limited their widely commercial applications. Concentration gradient design of Ni-Co-Mn/Al ternary concentration gradient materials have been extensively studied in the past decade, which can ensure high cycle capacity while maintaining excellent cycle stability. In this paper, the latest research progresses in Ni-Co-Mn/Al ternary concentration gradient materials for LIBs are reviewed. Firstly, we summarize the different synthesis methods of ternary concentration-gradient materials, especially focusing on the …


Research Progresses In Polymeric Proton Exchange Membranes For Fuel Cells, Xu-Po Liu, Yun-Feng Zhang, Shao-Feng Deng, De-Li Wang, Han-Song Cheng Feb 2020

Research Progresses In Polymeric Proton Exchange Membranes For Fuel Cells, Xu-Po Liu, Yun-Feng Zhang, Shao-Feng Deng, De-Li Wang, Han-Song Cheng

Journal of Electrochemistry

Proton exchange membrane (PEM) is one of the key components in PEM fuel cells, which possesses the function of separating the cathode and anode, affording proton transport channels and preventing fuel permeability. The property of PEM significantly influences the performance and service life of fuel cells. Nowadays, the commercially used Nafion membranes have the shortcomings of serious fuel permeability, low proton conductivity at elevated temperature and high price, which limits the rapid development of PEM fuel cells. Therefore, it seems to be urgent to develop novel PEMs with low cost and good comprehensive properties. Polymeric proton exchange membrane is an …


Electrochemical Preparations And Applications Of Nano-Catalysts With High-Index Facets, Chi Xiao, Na Tian, Zhi-You Zhou, Shi-Gang Sun Feb 2020

Electrochemical Preparations And Applications Of Nano-Catalysts With High-Index Facets, Chi Xiao, Na Tian, Zhi-You Zhou, Shi-Gang Sun

Journal of Electrochemistry

The performance of catalysts highly depends on their surface structure and composition. Nanocrystals bounded by high-index facets usually exhibit high catalytic activity due to their high-density low-coordinated step atoms with high reactivity. In this paper, we have reviewed the preparations of noble metals (e.g., Pt, Pd and Rh) nanocatalysts with high-index facets by electrochemical square-wave potential method developed in our group. The square-wave potential method includes a nucleation procedure to generate nuclei, followed by a square-wave potential procedure for a certain period of time for the growth of nuclei into nanocrystals. The formation mechanism of high-index facets is also discussed. …


Recent Progress In The Mechanistic Understanding Of Co2 Reduction On Copper, Matthew M Sartin, Wei Chen, Fan He, Yan-Xia Chen Feb 2020

Recent Progress In The Mechanistic Understanding Of Co2 Reduction On Copper, Matthew M Sartin, Wei Chen, Fan He, Yan-Xia Chen

Journal of Electrochemistry

In this review, we present the major developments in the understanding of the mechanisms of the electrochemical reduction of CO2 from a historical perspective. Most of the work discussed in this review was carried out at copper electrodes, as this is the only material at which hydrocarbons are produced in reasonable quantities. The emphasis focuses on the differentiation of mechanisms for the generation of C1 and C2 products as well as factors and methods for controlling the product selectivity of CO2 reduction. We have highlighted ambiguities, assumptions, and important methodologies, such as differential electrochemical mass spectrometry and electrochemical …


Challenges In The Activity And Stability Of Pt-Based Catalysts Toward Orr, Tuo Zhao, Er-Gui Luo, Xian Wang, Jun-Jie Ge, Chang-Peng Liu, Wei Xing Feb 2020

Challenges In The Activity And Stability Of Pt-Based Catalysts Toward Orr, Tuo Zhao, Er-Gui Luo, Xian Wang, Jun-Jie Ge, Chang-Peng Liu, Wei Xing

Journal of Electrochemistry

The development of highly efficient oxygen reduction reaction (ORR) catalysts is the key to the commercialization of fuel cells, where the sluggish ORR reaction rate needs to be overcome by adjusting the intermediates adsorption energies on the catalytic surfaces. To-date, platinum (Pt)-based materials are the-state-of-the-art catalysts in terms of both activity and stability in ORR, making them the preferred choice for commercial applications. However, the high cost of Pt-based catalysts limits their widespread use, leading to massive effects paid in reducing Pt loading, improving catalyst activity and stability. This article illustrates the challenges in the ORR reaction and introduces the …


Structures And Electrochemical Properties Of Sn-Cl Co-Doped Li2Mno3 As Positive Materials For Lithium Ion Batteries, Fei Wang, Huan-Huan Zhai, Du-Dan Wang, Yu-Peng Li, Kang-Hua Chen Feb 2020

Structures And Electrochemical Properties Of Sn-Cl Co-Doped Li2Mno3 As Positive Materials For Lithium Ion Batteries, Fei Wang, Huan-Huan Zhai, Du-Dan Wang, Yu-Peng Li, Kang-Hua Chen

Journal of Electrochemistry

Positive material Li2MnO3 shows the highest ratio of lithium to manganese among lithium-rich materials and exhibites the theoretical capacity up to 458 mAh·g-1, making it one of the most promising cathode materials. However, this material has the intrinsic low electrical conductivity and poor cycle stability. In this paper, Li2MnO3, the lithium-rich positive material, was prepared by sol-gel method using acetate as raw material and citric acid as a complexing agent. By using SnC2O4 as a tin source, Sn4+ instead of Mn4+ was introduced to obtain the …


Atomic Force Microscopic Characterization Of Solid Electrolyte Interphase In Lithium Ion Batteries, Qing-Yu Dong, Yan-Li Chu, Yan-Bin Shen, Li-Wei Chen Feb 2020

Atomic Force Microscopic Characterization Of Solid Electrolyte Interphase In Lithium Ion Batteries, Qing-Yu Dong, Yan-Li Chu, Yan-Bin Shen, Li-Wei Chen

Journal of Electrochemistry

In recent years, the rapid growing in the electric vehicle market has raised higher requirement on the lithium-ion batteries (LIBs) performance towards energy density and safety. However, considering the successful development of LIBs techniques in the past 30 years, there is little room left for improving the LIBs performance on the aspects related to the electrode materials, battery structure design and production processes. It is important to pursue more comprehensive fundamental understanding in the entire system and working principle of LIBs. Solid electrolyte interphase (SEI), existing between the electrode material and the electrolyte, has been proved to be an important …


Preparation And Electrocatalytic Performance Of Nico2O4/Ni Foam For Hydrogen Peroxide Electrooxidation, Wei-Wei Chen, Fei-Fan Zhang, Jia-Liang Du, Yi Wang, Chun-Lin Zhao, Kai Zhu, Dian-Xue Cao, Gui-Ling Wang Feb 2020

Preparation And Electrocatalytic Performance Of Nico2O4/Ni Foam For Hydrogen Peroxide Electrooxidation, Wei-Wei Chen, Fei-Fan Zhang, Jia-Liang Du, Yi Wang, Chun-Lin Zhao, Kai Zhu, Dian-Xue Cao, Gui-Ling Wang

Journal of Electrochemistry

The electrodes of Ni foam supported NiCo2O4 nanowires were prepared by hydrothermal method, followed by a thermal treatment in air, and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that the NiCo2O4 nanowires had a diameter of about 50 nm with a length up to 3 ~ 5 μm. The catalytic performances of the Ni foam supported NiCo2O4 nanowires for H2O2 electrooxidation were studied by cyclic voltammetry and chronoamperometry. The results show that the Ni foam supported NiCo …


Lithium Storage Performance Of High Capacity Material Si@CPzs In Lithium Ion Batteries, Qing-Nuan Zhang, Fang-Fang Zhang, Hong-Xia Li, Bing-Jun Yang, Xiao-Cheng Li, Juan Yang Feb 2020

Lithium Storage Performance Of High Capacity Material Si@CPzs In Lithium Ion Batteries, Qing-Nuan Zhang, Fang-Fang Zhang, Hong-Xia Li, Bing-Jun Yang, Xiao-Cheng Li, Juan Yang

Journal of Electrochemistry

Carbon layers with different thicknesses were introduced into the surfaces of silicon (Si) nanoparticles by sol-gel method using poly (cyclotriphosphazene-co-4, 4'-sulfonyldiphenol) as the carbon source. Technologies of X-ray diffraction, thermo-gravimetric analysis, Brunauer-Emmett-Teller and transmission electron microscopy were employed to analyze the structures and components of the as-prepared Si@CPZS composites. Electrochemical performance of Si@CPZS with different carbon thicknesses was studied. The results showed that Si@CPZS with carbon thickness of 10 nm possessed the best performance. Its capacity remained 940 mAh·g-1 after 290 cycles under 500 mA·g-1. As the addictive, the graphite-based anode contained 30% of …


Preparations Of Nickel-Iron Hydroxide/Sulfide And Their Electrocatalytic Performances For Overall Water Splitting, Hang-Shuo Lu, Xiao-Bo He, Feng-Xiang Yin, Guo-Ru Li Feb 2020

Preparations Of Nickel-Iron Hydroxide/Sulfide And Their Electrocatalytic Performances For Overall Water Splitting, Hang-Shuo Lu, Xiao-Bo He, Feng-Xiang Yin, Guo-Ru Li

Journal of Electrochemistry

The Ni-Fe/Ti oxygen evolution electrode was prepared by electrodeposition on a titanium mesh substrate. Then, the as prepared Ni-Fe/Ti electrode was used to derive the Ni-Fe-S/Ti hydrogen evolution electrode through solid phase sulfuration. The effects of the molar ratio of Ni2+ to Fe3+ in the electrolyte and the amount of thiourea on the structures and electrochemical performances of Ni-Fe/Ti and Ni-Fe-S/Ti electrodes were investigated. The results show that the oxygen evolution performance of Ni-Fe/Ti electrode was first increased and then decreased with the increase of nickel ion content in the electrolyte. The Ni9Fe1/Ti electrode exhibited the best oxygen …


Effect Of Nitrogen Content In Catalyst Precursor On Activity Of Fen/C Catalyst For Oxygen Reduction Reaction, Zhi Yang, Ya-Yun Shen, E Zhou, Cheng-Ling Wei, Hao-Li Qin, Juan Tian Feb 2020

Effect Of Nitrogen Content In Catalyst Precursor On Activity Of Fen/C Catalyst For Oxygen Reduction Reaction, Zhi Yang, Ya-Yun Shen, E Zhou, Cheng-Ling Wei, Hao-Li Qin, Juan Tian

Journal of Electrochemistry

Non-noble metal catalysts with high activity and low cost have attracted increasing interest as potential catalysts for oxygen reduction reaction (ORR) to replace Pt-based catalysts. In this paper, the effect of nitrogen content in catalyst precursor on ORR activity of FeN/C catalyst was investigated by X-ray diffraction (XRD), Brunauer-Emmet-Teller (BET) surface area and pore size distribution measurements, transmission electron microscope (TEM), thermogravimetric analysis (TGA), and rotating disk electrode (RDE) techniques. The results show that the most active catalyst was obtained by pyrolysis in argon at 1050 °C with a catalyst precursor containing 20wt% 1,10-phenanthroline, 1wt% Fe and Black Pearl 2000. …