Open Access. Powered by Scholars. Published by Universities.®

Biophysics Commons

Open Access. Powered by Scholars. Published by Universities.®

949 Full-Text Articles 1,578 Authors 208,378 Downloads 125 Institutions

All Articles in Biophysics

Faceted Search

949 full-text articles. Page 21 of 44.

Regulation Of The Tubulin Homolog Ftsz In Escherichia Coli, Monika S. Buczek 2018 The Graduate Center, City University of New York

Regulation Of The Tubulin Homolog Ftsz In Escherichia Coli, Monika S. Buczek

Dissertations, Theses, and Capstone Projects

Escherichia coli is a well-known pathogen, and importantly, a widely used model organism in all fields of biological sciences for cloning, protein purification, and as a model for Gram-negative bacterial species. And yet, researchers do not fully understand how this bacterium replicates and divides. Every year additional division proteins are discovered, which adds complexity to how we understand E. coli undergoes cell division. Due to their specific roles in cytokinesis, some of these proteins may be potential targets for development of antibacterials or bacteriostatics, which are much needed for fighting the current global antibacterial deficit. My thesis work focuses on …


Time-Resolved Structural Enzymology At X-Ray Free Electron Lasers, Tyler Norwood 2018 University of Wisconsin-Milwaukee

Time-Resolved Structural Enzymology At X-Ray Free Electron Lasers, Tyler Norwood

Theses and Dissertations

Within the last decade, X-ray Free Electron Lasers (XFELs) have emerged across the world. These XFELs produce X-ray pulses with a duration on the order of femtoseconds, each of which contains 1012 photons. Before the XFEL, the brightest X-ray sources were 3rd generation synchrotrons. While these facilities are still very important for many experiments, XFELs allow for time-resolved experiments with femtosecond time resolution and mixing experiments that are not possible at the synchrotron. Enzymatic processes have promising prospects for medicine which use proteins as drug targets and enhance our understanding of these important biomolecules.

A number of procedures are involved …


Dna Binding Kinetics Of Large Antiviral Hairpin Polyamides, Jacquelyn Niederschulte 2018 University of Missouri, St. Louis

Dna Binding Kinetics Of Large Antiviral Hairpin Polyamides, Jacquelyn Niederschulte

Dissertations

While vaccines exist for the some of the most problematic strains of human papillomavirus (HPV), a double stranded DNA virus, there is currently no cure. HPV remains one of the most commonly sexually transmitted infections and is responsible for virtually all cervical cancers and genital warts. Natural products Distamycin A and netropsin have inspired the hairpin Nmethylpyrrole (Py)/N-methylimidazole (Im) polyamides (PAs) studied here. The larger hairpin PAs, designed to bind to sites of 10 or more DNA bp, have been shown to be effective antivirals against oncogenic HPV strains 16, 18, and 31, while smaller hairpin PAs are not. Despite …


Analyzing The Effects Of Ca2+ Dynamics On Mitochondrial Function In Health And Disease, Patrick Toglia 2018 University of South Florida

Analyzing The Effects Of Ca2+ Dynamics On Mitochondrial Function In Health And Disease, Patrick Toglia

USF Tampa Graduate Theses and Dissertations

Mitochondria plays a crucial role in cells by maintaining energy metabolism and directing cell death mechanisms by buffering calcium (Ca2+ )from cytosol. Therefore, the Ca2+ overload of mitochondria due to the upregulated cytosolic Ca2+ , observed in many neurological disorders is hypothesized to be a key pathway leading to mitochondrial dysfunction and cell death. In particular, Ca2+ homeostasis disruptions due to Alzheimer’ s disease (AD)-causing presenilins (PS1/PS2) and oligomeric forms of β-amyloid peptides Aβ commonly found in AD patients are presumed to cause detrimental effects on the mitochondria and its ability to function properly. We begin …


Cloning, Purification, And Preliminary Dna-Binding And Unfolding Results For The Dna Polymerase I From The Psychrophile Psychromonas Ingrahamii, John Tod Baker 2018 Louisiana State University and Agricultural and Mechanical College

Cloning, Purification, And Preliminary Dna-Binding And Unfolding Results For The Dna Polymerase I From The Psychrophile Psychromonas Ingrahamii, John Tod Baker

LSU Master's Theses

Psychromonas ingrahamii is a psychrophilic bacterium that lives in Arctic polar sea ice and grows at a temperature range of -12 to 10º C. This bacterium resides within veins inside the ice where the salinity is high, resulting in a freezing point depression and liquid water. The large fragment of DNA polymerase I from Psychromonas ingrahamii, called Klenpin, has been cloned, expressed, and purified in our laboratory. Although enzyme kinetic studies have been performed on a few psychrophilic enzymes, the thermodynamics of ligand binding and of protein stability have not been well studied for this class of extremophilic proteins. …


Experiences Of The Breast Cancer Patients Undergoing Radiotherapy At A Public Hospital Peshawar Pakistan, Gulzar Habibullah, Raisa Raisa, Shanaz Hussein Cassum, Rehana Elahi 2018 Postgraduate College of Nursing Hayatabad, Peshawar, Pakistan

Experiences Of The Breast Cancer Patients Undergoing Radiotherapy At A Public Hospital Peshawar Pakistan, Gulzar Habibullah, Raisa Raisa, Shanaz Hussein Cassum, Rehana Elahi

School of Nursing & Midwifery

Objective: This study aimed to explore the experiences of female breast cancer patients undergoing radiotherapy (RT) in a public hospital in Peshawar, Pakistan.
Methods: This study employed a descriptive exploratory method. A purposive sample of 14 breast cancer women undergoing RT was selected for this study. Data were collected over the period of 5 months, using a semi-structured interview guide and conducting in-depth face-to-face interviews. These interviews were audio taped and transcribed by a bilingual transcriber. The translated version of the interview was coded, and the analysis was done manually.
Results: Four main categories emerged from data analysis, which were: …


Observing The Molecular Basis Of Thin Filament Activation With A Three Bead Laser Trap Assay, Thomas Longyear 2018 University of Massachusetts Amherst

Observing The Molecular Basis Of Thin Filament Activation With A Three Bead Laser Trap Assay, Thomas Longyear

Doctoral Dissertations

Muscle contracts after calcium (Ca++) is released into the muscle cell, resulting from a cascade of events which result in myosin, the molecular motor of muscle, to produce force and motion. Myosin cyclically binds to a regulated thin filament, using the chemical energy of ATP to produce force and motion. Perturbations in muscle, such as a build-up of metabolic by-products or point mutations in key contractile proteins, can inhibit these functions in both skeletal and cardiac muscle either acutely or chronically. Despite the many years we have studied skeletal and cardiac muscle, we still do not have a clear picture …


The Role Of The Metallochaperone Hypa In The Acid Survival And Activities Of Nickel Enzymes In Helicobacter Pylori, Heidi Hu 2018 University of Massachusetts Amherst

The Role Of The Metallochaperone Hypa In The Acid Survival And Activities Of Nickel Enzymes In Helicobacter Pylori, Heidi Hu

Doctoral Dissertations

Helicobacter pylori is a bacterium that has colonized the human gastric mucosa of over 50% of the world population. Persistent infection can cause gastritis, peptic ulcers, and cancers. The ability of H. pylori to colonize the acidic environment of the human stomach is dependent on the activity of the nickel containing enzymes, urease and NiFe-hydrogenase. The nickel metallochaperone, HypA, was previously shown to be required for the full activity of both enzymes. In addition to a Ni-binding site, HypA also contains a structural Zn site, which has been characterized to alter its averaged structure depending on pH and the presence …


Maternal Protein Restriction (Mpr): A Risk Factor For Acute Respiratory Distress Syndrome (Ards), Reza Khazaee 2018 University of Western Ontario

Maternal Protein Restriction (Mpr): A Risk Factor For Acute Respiratory Distress Syndrome (Ards), Reza Khazaee

Western Research Forum

Background: Acute respiratory distress syndrome (ARDS) is defined as severe lung dysfunction. The lung impairments in ARDS result from alterations to pulmonary surfactant; a lipid-protein mixture coating the inside of the lung and maintains the lungs’ ability to expand easily. Due to a lack of effective pharmacological therapies mortality associated with ARDS is over 30%. Our research focuses on risk factors that indicate a susceptibility to the disease, which could provide new and early therapeutic options. One such potential risk factor is Maternal Protein Restriction (MPR). MPR is defined by low birth weight and contributes to a variety of adult-onset …


Thermodynamics In Large Hairpin Polyamide-Dna Interactions, Yang Song 2018 University of Missouri, St. Louis

Thermodynamics In Large Hairpin Polyamide-Dna Interactions, Yang Song

Dissertations

Human papillomavirus (HPV) is a common sexually transmitted virus responsible for cervical cancers, and its infection is currently incurable. Only a few vaccines against high-risk HPV strains are available. Hairpin polyamides (PAs) in different sizes (8-20 units long) bind DNA in different lengths. They have been shown to have different anti-HPV activities in cell culture.

The interaction between PA and DNA is stabilized by two types of molecular forces: attractive and repulsive forces. Attractive forces include hydrogen bonds, van der Waals contacts and electrostatic forces between PA and DNA. Repulsive forces include the hydrophobic effect, which forces the PA out …


Hard-Sphere-Like Dynamics In Highly Concentrated Alpha-Crystallin Suspensions, Preeti Vodnala, Laurence Lurio, Michael C. Vega, Elizabeth Gaillard 2018 Northern Illinois University

Hard-Sphere-Like Dynamics In Highly Concentrated Alpha-Crystallin Suspensions, Preeti Vodnala, Laurence Lurio, Michael C. Vega, Elizabeth Gaillard

Faculty Peer-Reviewed Publications

The dynamics of concentrated suspensions of the eye-lens protein alpha crystallin have been measured using x-ray photon correlation spectroscopy. Measurements were made at wave vectors corresponding to the first peak in the hard-sphere structure factor and volume fractions close to the critical volume fraction for the glass transition. Langevin dynamics simulations were also performed in parallel to the experiments. The intermediate scattering function f(q,τ) could be fit using a stretched exponential decay for both experiments and numerical simulations. The measured relaxation times show good agreement with simulations for polydisperse hard-sphere colloids.


Investigating The Response Of Magnetotactic Bacteria To Varying Field Strength And Developing Autonomous Analysis Of Spatial Dispersal, Madeleine D. Pasco 2018 Rose-Hulman Institute of Technology

Investigating The Response Of Magnetotactic Bacteria To Varying Field Strength And Developing Autonomous Analysis Of Spatial Dispersal, Madeleine D. Pasco

Rose-Hulman Undergraduate Research Publications

Magnetotactic bacteria (MTB) are single-celled organisms which contain organelles called “magnetosomes,” membrane-bound ferrous nanocrystals. These organelles allow for magnetotaxis, which is movement guided by magnetic fields. MTB are generally found in the top layers of sediment of aqueous environments, and magnetotaxis is thought to help guide these microbes to ideal oxygen concentrations in the water after they may have been displaced by turbulent waters. In this we study the effect of the strength of a magnetic field on magnetotaxis.


Inactivation Of Myeloma Cancer Cells By Helium And Argon Plasma Jets: The Effect Comparison And The Key Reactive Species, Zeyu Chen, Qingjie Cui, Chen Chen, Dehui Xu, Dingxin Liu, H. L. Chen, Michael G. Kong 2018 Old Dominion University

Inactivation Of Myeloma Cancer Cells By Helium And Argon Plasma Jets: The Effect Comparison And The Key Reactive Species, Zeyu Chen, Qingjie Cui, Chen Chen, Dehui Xu, Dingxin Liu, H. L. Chen, Michael G. Kong

Bioelectrics Publications

In plasma cancer therapy, the inactivation of cancer cells under plasma treatment is closely related to the reactive oxygen and nitrogen species (RONS) induced by plasmas. Quantitative study on the plasma-induced RONS that related to cancer cells apoptosis is critical for advancing the research of plasma cancer therapy. In this paper, the effects of several reactive species on the inactivation of LP-1 myeloma cancer cells are comparatively studied with variable working gas composition, surrounding gas composition, and discharge power. The results show that helium plasma jet has a higher cell inactivation efficiency than argon plasma jet under the same discharge …


Modulation Of The Navigational Strategy Of Insects In Controlled Temperature Environments, Joseph Shomar, Anggie Ferrer, Josh Forer, Tom Zhang, Mason Klein 2018 University of Miami

Modulation Of The Navigational Strategy Of Insects In Controlled Temperature Environments, Joseph Shomar, Anggie Ferrer, Josh Forer, Tom Zhang, Mason Klein

2018 Entries

With its small size and limited motor tool set, the Drosophila larva is a good system to study how animals alter specific elements of their behavior to search and reach optimal environmental conditions. We aim to understand the larva’s response to temperature across development, in sensory gradients, and to distinguish behavioral modulations based on physical changes from those due to sensory input. PID-controlled instruments drive temporal or spatial temperature gradients; combined with a moat system to replenish gels at high temperature, we can explore the larva’s full behavioral profile. Many larvae are simultaneously observed during free navigation in three different …


Alternative Strategies To Inhibit Lysine Methyltransferases And Deubiquitinases In Human Cancers, Nicholas Spellmon 2018 Wayne State University

Alternative Strategies To Inhibit Lysine Methyltransferases And Deubiquitinases In Human Cancers, Nicholas Spellmon

Wayne State University Dissertations

X-ray crystallography is the gold standard method for imagining macromolecules to atomic resolution. Three dimensional data is central to understanding the molecular mechanism how DNA, RNA and proteins function in biological events. Structural insights into these events provide a molecular window to visualize how biological molecules influence human health. Visualizing the architecture of these molecules set the stage for rational and selective drug design. The following dissertation utilizes biochemical and biophysical tools, including X-ray crystallography, to shed light on poorly understood mechanisms related to SMYD2 activity and regulation, USP10 architecture and function, and PDZ-RhoGEF dimerization. SMYD2 is one member of …


Polarized Localization Microscopy (Plm) Detects Nanoscale Membrane Curvature And Induced Budding By Cholera Toxin Subunit B (Ctxb), Abir Kabbani 2018 Wayne State University

Polarized Localization Microscopy (Plm) Detects Nanoscale Membrane Curvature And Induced Budding By Cholera Toxin Subunit B (Ctxb), Abir Kabbani

Wayne State University Dissertations

The curvature of biological membranes at the nanometer scale is critically important for vesicle trafficking, organelle morphology, and disease propagation. Many proteins and lipids interact with diverse curvature sensing and curvature generating mechanisms. Deciphering the molecular mechanisms of toxin-membrane interactions has been limited by the resolution and drawbacks of conventional experimental techniques. This study reveals the inherent membrane bending capability of cholera toxin subunit B (CTxB) through the development and implementation of Polarized Localization Microscopy (PLM). PLM is a pointillist optical imaging technique for the detection of nanoscale membrane curvature in correlation with single-molecule dynamics and molecular sorting.

PLM combines …


The Contributions Of Fc Gamma Receptors And Macropinocytosis To The Internalization, Sorting And Clearance Of Antibody Coated Nanovesicles In Macrophages, George Opoku-Kusi Jr. 2018 South Dakota State University

The Contributions Of Fc Gamma Receptors And Macropinocytosis To The Internalization, Sorting And Clearance Of Antibody Coated Nanovesicles In Macrophages, George Opoku-Kusi Jr.

Electronic Theses and Dissertations

Macrophages are tissue-resident phagocytes that play critical roles in immune response and tissue homeostasis. They have a tremendous capacity to internalize objects of various sizes ranging from nanoscale viral particles to micron sized bacteria and tumor cells. This phenomenon, termed phagocytosis for the uptake of large particles, or endocytosis for the uptake of small particles, is integral to the immune response in multicellular organisms. Macrophages express FcγRs, which are tyrosine kinase receptors that bind IgG on an opsonized target. Binding of IgG Fc domain to the extracellular domain of an FcγR triggers signaling cascades that coordinate internalization of the opsonized …


Confirmation That Mrub_1751 Is Homologous To E. Coli Xylf, Mrub_1752 Is Homologous To E. Coli Xylh, And Mrub_1753 Is Homologous To E. Coli Xylg, Ben Price, Dr. Lori Scott 2018 Augustana College, Rock Island Illinois

Confirmation That Mrub_1751 Is Homologous To E. Coli Xylf, Mrub_1752 Is Homologous To E. Coli Xylh, And Mrub_1753 Is Homologous To E. Coli Xylg, Ben Price, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_1751, Mrub_1752 and Mrub_1753 (KEGG map number 02010). We predict these genes encode components of a D-xylose ATP Binding Cassette (ABC) transporter: 1) Mrub_1752 (DNA coordinates 1809004-1810224 on the forward strand) encodes the permease component (aka transmembrane domain), predicted to be an ortholog and 2) Mrub_1753 (DNA coordinates 1810227-1811000 on the forward strand) encodes the ATP-binding domain (aka nucleotide binding domain); and 3) Mrub_1751 (DNA coordinates 1807855-1808892 on the forward strand) encodes the solute binding protein. The ABC-transporter for M. ruber to transport D-xylose is homologous with the transporter …


Protein Suppression Of Flavin Semiquinone As A Mechanistically Important Control Of Reactivity: A Study Comparing Flavoenzymes Which Differ In Redox Properties, Substrates, And Ability To Bifurcate Electrons, John Patrick Hoben 2018 University of Kentucky

Protein Suppression Of Flavin Semiquinone As A Mechanistically Important Control Of Reactivity: A Study Comparing Flavoenzymes Which Differ In Redox Properties, Substrates, And Ability To Bifurcate Electrons, John Patrick Hoben

Theses and Dissertations--Chemistry

A growing number of flavoprotein systems have been observed to bifurcate pairs of electrons. Flavin-based electron bifurcation (FBEB) results in products with greater reducing power than that of the reactants with less reducing power. Highly reducing electrons at low reduction midpoint potential are required for life processes of both aerobic and anaerobic metabolic processes. For electron bifurcation to function, the semiquinone (SQ) redox intermediate needs to be destabilized in the protein to suppress its ability to trap electrons. This dissertation examines SQ suppression across a number of flavin systems for the purpose of better understanding the nature of SQ suppression …


Spontaneous Dna Damage To The Nuclear Genome Promotes Senescence, T Redox Imbalance And Aging, Andria R. Robinson, Matthew J. Yousefzadeh, Tania A. Rozgaja, Jin Wang, Xuesen Li, Jeremy S. Tilstra, Chelsea H. Feldman, Siobhan Q. Gregg, Caroline H. Johnson, Erin M. Skoda, Marie-Celine Frantz, Harris Bell-Temin, Hannah Pope-Varsalona, Aditi U. Gurkar, Luigi A. Nasto, Rena A.S. Robinson, Heike Fuhrmann-Stroissnigg, Jolanta Czerwinska, Sara J. McGowan, Nadiezhda Cantu-Madellin, Jamie B. Harris, Salony Maniar, Mark A. Ross, Christy E. Trussoni, Nicholas F. LaRusso, Eugenia Cifuentes-Pagano, Patrick J. Pagano, Barbara Tudek, Nam V. Vo, Lora H. Rigatti, Patricia L. Opresko, Donna B. Stolz, Simon C. Watkins, Christin E. Burd, Claudette M. St, Croix, Gary Siuzdak, Nathan A. Yates, Paul D. Robbins, Yinsheng Wang, Peter Wipf, Eric E. Kelley, Laura J. Neidernhofer 2018 University of Pittsburgh

Spontaneous Dna Damage To The Nuclear Genome Promotes Senescence, T Redox Imbalance And Aging, Andria R. Robinson, Matthew J. Yousefzadeh, Tania A. Rozgaja, Jin Wang, Xuesen Li, Jeremy S. Tilstra, Chelsea H. Feldman, Siobhan Q. Gregg, Caroline H. Johnson, Erin M. Skoda, Marie-Celine Frantz, Harris Bell-Temin, Hannah Pope-Varsalona, Aditi U. Gurkar, Luigi A. Nasto, Rena A.S. Robinson, Heike Fuhrmann-Stroissnigg, Jolanta Czerwinska, Sara J. Mcgowan, Nadiezhda Cantu-Madellin, Jamie B. Harris, Salony Maniar, Mark A. Ross, Christy E. Trussoni, Nicholas F. Larusso, Eugenia Cifuentes-Pagano, Patrick J. Pagano, Barbara Tudek, Nam V. Vo, Lora H. Rigatti, Patricia L. Opresko, Donna B. Stolz, Simon C. Watkins, Christin E. Burd, Claudette M. St, Croix, Gary Siuzdak, Nathan A. Yates, Paul D. Robbins, Yinsheng Wang, Peter Wipf, Eric E. Kelley, Laura J. Neidernhofer

Faculty & Staff Scholarship

Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/Δ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/Δ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/Δ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/Δ mice never exceeded that …


Digital Commons powered by bepress